Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic supplementary information

First Principles Study on Electrochemical and Chemical Stability of the Solid Electrolyte-

Electrode Interfaces in All-Solid-State Li-ion Batteries

Yizhou Zhu¹, Xingfeng He¹, Yifei Mo^{1,2*}

¹ Department of Materials Science and Engineering,

² University of Maryland Energy Research Center,

University of Maryland, College Park, MD 20742

* Email: <u>yfmo@umd.edu</u>

(a) $L_{12.88}PO_{3.73}N_{0.1}$	14		
Potential ϕ ref	$\mu_{\rm Li}$ ref to Li	$\Delta n_{\rm Li}$ per	Phase equilibria
to $L_1/L_1(V)$	metal (eV)	formula	1
0.01	-0.01	8	Li ₃ N, Li ₂ O, Li ₃ P
0.61	-0.61	7.72	Li_7PN_4 , Li_2O , Li_3P
0.68	-0.68	7.44	LiPN ₂ , Li ₂ O, Li ₃ P
0.69	-0.69	6.88	Li_2PO_2N , Li_2O , Li_3P
		0	Li _{2.88} PO _{3.73} N _{0.14}
1.07	-1.07	-0.01	Li ₂ PO ₂ N, LiN ₃ , Li ₃ PO ₄
1.67	-1.67	-0.01	Li_2PO_2N , N_2 , Li_3PO_4
2.60	-2.60	-0.42	N_2 , $Li_4P_2O_7$, Li_3PO_4
3.58	-3.58	-0.80	N_2 , $Li_4P_2O_7$, $LiNO_3$
3.66	-3.66	-0.88	N_2 , $Li_4P_2O_7$, NO_2
3.71	-3.71	-0.98	Li ₄ P ₂ O ₇ , LiPO ₃ , NO ₂
3.77	-3.77	-1.12	Li ₄ P ₂ O ₇ , LiPO ₃ , LiNO ₃
4.33	-4.33	-1.74	LiPO ₃ , O ₂ , LiNO ₃
4.82	-4.82	-1.88	$LiPO_3, O_2, N_2O_5$
4.99	-4.99	-2.88	P_2O_5, O_2, N_2O_5

 Table S1. Calculated phase equilibiria for the LiPON solid electrolyte materials at applied potential.

 (a) Lia sePO2 72No 14

(b) Li_{2.98}PO_{3.3}N_{0.46}

Potential ϕ ref to Li/Li ⁺ (V)	$\mu_{\rm Li}$ ref to Li metal (eV)	$\Delta n_{\rm Li}$ per formula	Phase equilibria
0.01	-0.01	8	Li ₃ N, Li ₂ O, Li ₃ P
0.61	-0.61	7.08	Li ₇ PN ₄ , Li ₂ O, Li ₃ P
0.68	-0.68	6.16	LiPN ₂ , Li ₂ O, Li ₃ P
0.69	-0.69	4.32	Li ₂ PO ₂ N, Li ₂ O, Li ₃ P
		0	Li _{2.98} PO _{3.3} N _{0.46}
1.07	-1.07	-0.29	Li ₂ PO ₂ N, LiN ₃ , Li ₃ PO ₄
1.67	-1.67	-0.33	Li_2PO_2N , N_2 , Li_3PO_4
2.60	-2.60	-0.98	Li ₂ PO ₂ N, N ₂ , Li ₄ P ₂ O ₇
2.63	-2.63	-1.09	P_3N_5 , N_2 , $Li_4P_2O_7$
2.75	-2.75	-1.10	P_4ON_6 , N_2 , $Li_4P_2O_7$
2.77	-2.77	-1.38	$LiPO_3$, N_2 , $Li_4P_2O_7$
3.71	-3.71	-1.98	LiPO ₃ , NO ₂ , N ₂
4.38	-4.38	-2.98	P ₂ O ₅ , NO ₂ , N ₂

Table S2. Phase equilibria and decomposition energies of the SE-LCO and SE- $L_{0.5}$ CO interfaces.

uj LOID

$C_{ m Electrode}$	x	Phase equilibria	$\Delta E_{D,mutual}$ (meV/atom)	$\Delta E_{D,total}$ (meV/atom)
	0.06	CoO, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄ , Li ₆ CoO ₄	-82	-83
	0.159	Co, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄ , Li ₆ CoO ₄	-210	-213
	0.163	Co, Li ₂ O, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄	-213	-216
LCO	0.35	C09S ₈ , Li ₂ O, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄	-314	-321
LCO	0.42	Co ₉ S ₈ , Li ₂ S, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄	-340	-349
	0.44	Co ₉ S ₈ , Li ₂ S, Li ₂ GeO ₃ , Li ₃ PO ₄ , Li ₂ SO ₄	-339	-348
	0.52	Co ₉ S ₈ , Li ₂ S, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeS ₄	-329	-339
	0.59	Co ₃ S ₄ , Li ₂ S, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeS ₄	-319	-331
	0.61	CoS ₂ , Co ₃ S ₄ , Li ₂ S, Li ₃ PO ₄ , Li ₄ GeS ₄	-313	-325
	0.0510	Co ₃ O ₄ , LCO, Li ₂ GeO ₃ , Li ₃ PO ₄ , Li ₂ SO ₄	-230	-262
	0.0513	Co ₃ O ₄ , LCO, Li ₂ CoGeO ₄ , Li ₃ PO ₄ , Li ₂ SO ₄	-231	-263
	0.088	CoO, LCO, Li ₂ CoGeO4, Li ₃ PO ₄ , Li ₂ SO ₄	-314	-346
	0.090	CoO, LCO, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄	-317	-349
	0.10	CoO, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄ , Li ₆ CoO ₄	-328	-360
I CO	0.13	Co, CoO, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄	-360	-391
$L_{0.5}CO$	0.14	Co, CoO, Li ₂ CoGeO ₄ , Li ₃ PO ₄ , Li ₂ SO ₄	-370	-401
	0.31	Co, Co ₉ S ₈ , Li ₂ CoGeO ₄ , Li ₃ PO ₄ , Li ₂ SO ₄	-467	-496
	0.37	Co, Co ₉ S ₈ , Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄	-492	-520
	0.397	Co ₉ S ₈ , Li ₂ O, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₄ GeO ₄	-498	-526
	0.404	Co_9S_8 , Li_2S , Li_3PO_4 , Li_2SO_4 , Li_4GeO_4	-499	-527
	0.43	Co_9S_8 , Li_2S , Li_2GeO_3 , Li_3PO_4 , Li_2SO_4	-492	-519
	0.50	Co_9S_8 , Li_2S , Li_3PO_4 , Li_2SO_4 , Li_4GeS_4	-462	-489
	0.59	Co_3S_4 , Li_2S , Li_3PO_4 , Li_2SO_4 , Li_4GeS_4	-428	-453
	0.64	CoS ₂ , Co ₃ S ₄ , Li ₂ S, Li ₃ PO ₄ , Li ₄ GeS ₄	-398	-423

b) Li₃PS₄

C _{Electrode}	x	Phase equilibria	$\Delta E_{D,mutual}$ (meV/atom)	$\Delta E_{D,total}$ (meV/atom)
	0.06	CoO, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₆ CoO ₄	-90	-90
	0.15	Co, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₆ CoO ₄	-233	-233
	0.16	$Co, Li_2O, Li_3PO_4, Li_2SO_4$	-237	-237
LCO	0.34	Co ₉ S ₈ , Li ₂ O, Li ₃ PO ₄ , Li ₂ SO ₄	-368	-368
	0.41	Co_9S_8 , Li_2S , Li_3PO_4 , Li_2SO_4	-405	-405
	0.48	Co ₃ S ₄ , Li ₂ S, Li ₃ PO ₄ , Li ₂ SO ₄	-405	-405
	0.50	CoS_2 , Co_3S_4 , Li_2S , Li_3PO_4	-401	-401
	0.05	Co ₃ O ₄ , LCO, Li ₃ PO ₄ , Li ₂ SO ₄	-238	-269
	0.09	CoO, LCO, Li ₃ PO ₄ , Li ₂ SO ₄	-331	-361
	0.10	CoO, Li ₃ PO ₄ , Li ₂ SO ₄ , Li ₆ CoO ₄	-344	-374
	0.12	Co, CoO, Li ₃ PO ₄ , Li ₂ SO ₄	-380	-409
L _{0.5} CO	0.36	$Co, Co_9S_8, Li_3PO_4, Li_2SO_4$	-552	-573
	0.387	Co ₉ S ₈ , Li ₂ O, Li ₃ PO ₄ , Li ₂ SO ₄	-562	-582
	0.394	Co_9S_8 , Li_2S , Li_3PO_4 , Li_2SO_4	-564	-584
	0.47	Co ₃ S ₄ , Li ₂ S, Li ₃ PO ₄ , Li ₂ SO ₄	-543	-560
	0.53	CoS ₂ , Co ₃ S ₄ , Li ₂ S, Li ₃ PO ₄	-518	-534

c) LiPON_{0.14}

$\mathcal{C}_{ ext{Electrode}}$	x	Phase equilibria	$\Delta E_{D,mutual}$ (meV/atom)	$\Delta E_{D,total}$ (meV/atom)
	0.93	CoN, Li ₃ PO ₄ , Li ₅ CoO ₄	-35	-35
	0.931	N ₂ , CoN, Li ₃ PO ₄ , Li ₆ CoO ₄	-35	-35
ICO	0.933	CoN, Li ₂ O, Li ₃ PO ₄	-35	-35
LCO	0.935	CoN, Co ₂ N, LiN ₃ , Li ₃ PO ₄	-34	-34
	0.96	Co ₂ N, LiN ₃ , Li ₂ PO ₂ N, Li ₃ PO ₄	-21	-21
	0.98	Co, LiN ₃ , Li ₂ PO ₂ N, Li ₃ PO ₄	-11	-11
	0.59	Co ₃ O ₄ , LCO, LiNO ₃ , Li ₃ PO ₄	-65	-79
	0.80	N ₂ , Co ₃ O ₄ , LCO, Li ₃ PO ₄	-62	-69
	0.88	N ₂ , CoO, LCO, Li ₃ PO ₄	-56	-60
	0.90	N ₂ , CoN, CoO, Li ₃ PO ₄	-53	-56
LarCO	0.94	N ₂ , CoN, Li ₃ PO ₄ , LiCoPO ₄	-42	-44
L _{0.5} CO	0.95	N ₂ , CoN, Li ₃ PO ₄ , Li ₄ P ₂ O ₇	-38	-40
	0.987	N ₂ , CoN, Li ₂ PO ₂ N, Li ₃ PO ₄	-12	-12
	0.988	CoN, LiN ₃ , Li ₂ PO ₂ N, Li ₃ PO ₄	-11	-11
	0.991	Co ₂ N, LiN ₃ , Li ₂ PO ₂ N, Li ₃ PO ₄	-8	-8
	0.993	Co, LiN ₃ , Li ₂ PO ₂ N, Li ₃ PO ₄	-7	-7

d) LiPON_{0.46}

C _{Electrode}	x	Phase equilibria	$\Delta E_{D,mutual}$ (meV/atom)	$\Delta E_{D,total}$ (meV/atom)
	0.77	CoN, Li ₃ PO ₄ , Li5CoO4	-96	-96
	0.79	N_2 , CoN, Li ₃ PO ₄ , Li ₆ CoO ₄	-98	-98
LCO	0.81	CoN, Li ₂ O, Li ₃ PO ₄	-99	-99
	0.82	Co ₂ N, LiN ₃ , Li ₂ O, Li ₃ PO ₄	-95	-95
	0.83	Co, LiN ₃ , Li ₂ O, Li ₃ PO ₄	-91	-91
	0.30	Co ₃ O ₄ , LCO, LiNO ₃ , Li ₃ PO ₄	-117	-140
	0.52	N_2 , Co_3O_4 , LCO, Li_3PO_4	-148	-164
	0.62	N ₂ , CoO, LCO, Li ₃ PO ₄	-154	-167
I CO	0.77	N ₂ , CoN, LCO, Li ₃ PO ₄	-144	-152
	0.838	N ₂ , CoN, Li ₃ PO ₄ , Li ₅ CoO ₄	-138	-143
L _{0.5} CO	0.843	N_2 , CoN, Li ₃ PO ₄ , Li ₆ CoO ₄	-138	-143
	0.849	N_2 , CoN, Li_2O , Li_3PO_4	-136	-141
	0.851	CoN, LiN ₃ , Li ₂ O, Li ₃ PO ₄	-136	-141
	0.857	Co ₂ N, LiN ₃ , Li ₂ O, Li ₃ PO ₄	-131	-136
	0.863	Co, LiN ₃ , Li ₂ O, Li ₃ PO ₄	-126	-131

e) LLZO

C _{Electrode}	x	Phase equilibria	$\Delta E_{D,mutual}$ (meV/atom)	$\Delta E_{D,total}$ (meV/atom)
LCO	0.96	La_2O_3 , $Li_6Zr_2O_7$, Li_5CoO_4	-1	-8
L _{0.5} CO	0.47	O ₂ , La ₂ Zr ₂ O ₇ , La ₂ O ₃ , Li ₇ Co ₅ O ₁₂	-39	-60
	0.49	La ₂ Zr ₂ O ₇ , La ₂ O ₃ , Li ₂ O ₂ , Li ₇ Co ₅ O ₁₂	-38	-58
	0.87	La ₂ O ₃ , Li ₂ O ₂ , Li ₇ Co ₅ O ₁₂ , Li ₆ Zr ₂ O ₇	-14	-24
	0.93	La ₂ O ₃ , Li ₇ Co ₅ O ₁₂ , Li ₆ Zr ₂ O ₇ , Li ₈ CoO ₆	-8	-17
	0.98	La ₂ O ₃ , Li ₆ Zr ₂ O ₇ , Li ₈ CoO ₆ , Li ₅ CoO ₄	-3	-11

f) LLTO

$C_{\text{Electrode}}$	x	Phase equilibria	$\frac{\Delta E_{\rm D,mutual}}{(\rm meV/atom)}$	$\Delta E_{D,total}$ (meV/atom)
LCO	0.64	Co ₃ O ₄ , La ₂ Ti ₂ O ₇ , Li ₂ TiO ₃ , L _{0.5} CO	-0.5	-44
	0.98	Co ₃ O ₄ , La ₂ Ti ₂ O ₇ , L _{0.5} CO, Li ₄ Ti ₅ O ₁₂	-0.04	-67
L _{0.5} CO	-	LLTO, L _{0.5} CO (stable)	0	-

g) LATP

$C_{\rm Electrode}$	x	Phase equilibria	$\Delta E_{D,mutual}$ (meV/atom)	$\Delta E_{\rm D,total}$ (meV/atom)
LCO	0.25	Co ₃ O ₄ , LiAl ₅ O ₈ , Li ₃ PO ₄ , L _{0.5} CO, Li ₂ TiO ₃	-41	-48
	0.29	Co ₃ O ₄ , LiAl ₅ O ₈ , Li ₃ PO ₄ , L _{0.5} CO, Li ₄ Ti ₅ O ₁₂	-48	-56
	0.32	Co ₃ O ₄ , TiO ₂ , LiAl ₅ O ₈ , Li ₃ PO ₄ , L _{0.5} CO	-53	-62
	0.35	Co ₃ O ₄ , AlPO ₄ , TiO ₂ , Li ₃ PO ₄ , L _{0.5} CO	-53	-63
	0.52	Co ₃ O ₄ , AlPO ₄ , LiTiPO ₅ , Li ₃ PO ₄ , L _{0.5} CO	-41	-56
L _{0.5} CO	-	LATP, L _{0.5} CO (stable)	0	-

Interface	Applied voltage ϕ (V)	Phase equilibria under ϕ and at $x = x_m(\phi)$	$ \Delta E_{\rm D,min,mutual}^{\rm open} \\ (meV/atom) $	$ \Delta E_{\rm D,min,total}^{\rm open} \ ({\rm meV/atom}) $
	2.00 - 2.14	CooS ₈ , Li ₂ SO ₄ , Li ₃ PO ₄ , Li ₂ GeO ₃	[-540, -519]	[-546, -525]
	2.03 - 2.45	$C_{03}S_4$ Li ₂ SO ₄ Li ₂ PO ₄ Li ₂ GeO ₃	[-556, -543]	[-604, -551]
	2.45 - 2.62	$C_{03}S_{4}$, Li_2SO_{4} , Li_3PO_{4} , $Li_2Ge_7O_{15}$	[-547, -542]	[-645, -611]
	2.62 - 2.90	$C_{0}S_{8}$ Li ₂ SO ₄ Li ₃ PO ₄ GeO ₂	[-542, -536]	[-683, -632]
LGPS-	290 - 300	$C_{09}S_8$ Li ₂ SO ₄ LiCoPO ₄ GeO ₂	[-541 -536]	[-696 -675]
LCO	3.00 - 3.14	$C_{03}S_4$, $L_{12}SO_4$, $L_{12}C_{04}$, $L_{12}C_{07}$	[-551, -542]	[-764, -728]
	3.14 - 3.20	Co_3S_4 , Li_2SO_4 , $Co_3(PO_4)_2$, GeO_2	[-557, -552]	[-773, -759]
	3.20 - 3.32	Co_3S_4 , $CoSO_4$, $Co_3(PO_4)_2$, GeO_2	[-583, -559]	[-787, -744]
	3.32 - 5.00	Co_9S_8 , $CoSO_4$, $Co_3(PO_4)_2$, GeO_2	[-696, -588]	[-1269, -767]
	2.00 - 2.58	Li ₂ TiO ₃ , La ₂ TiO ₅ , CoO	[-73, -21]	[-130, -71]
	2.58 - 2.63	Li_2TiO_3 , La_2TiO_5 , Co_3O_4	[-19, -18]	[-63, -62]
LLTO-	2.63 - 3.34	Li_2TiO_3 , $La_2Ti_2O_7$, CO_3O_4	[-17, -1]	[-71, -54]
LCO	3.34 - 3.71	LLTO, L _{0.5} CO	0	[-152, -68]
	3.71 - 4.10	La ₂ Ti ₂ O ₇ , TiO ₂ , O ₂ , L _{0.5} CO	0	[-68, -9]
	4.10 - 5.00	La ₂ Ti ₂ O ₇ , TiO ₂ , O ₂ , CoO ₂	0	[-113, -9]
	2.00 - 2.27	Li ₃ PO ₄ , LiAlO ₂ , Li ₂ TiO ₃ , Co	[-282, -223]	[-326, -242]
	2.27 - 2.37	Li ₃ PO ₄ , Al ₂ CoO ₄ , Li ₂ Ti ₃ CoO ₈ , Co	[-213, -193]	[-233, -213]
	2.37 - 2.53	Li ₃ PO ₄ , Al ₂ CoO ₄ , Li ₂ Ti ₃ CoO ₈ , CoO	[-189, -168]	[-205, -184]
	2.53 - 2.88	Li ₃ PO ₄ , Al ₂ CoO ₄ , TiCoO ₃ , CoO	[-165, -121]	[-182, -138]
	2.88 - 3.14	Li ₃ PO ₄ , Al ₂ CoO ₄ , Ti ₂ CoO ₄ , Co ₃ O ₄	[-118, -101]	[-133, -116]
ТАТР	3.14 - 3.40	Li ₃ PO ₄ , Al ₂ CoO ₄ , TiO ₂ , Co ₃ O ₄	[-99, -81]	[-116, -101]
LAIF-	3.40 - 3.59	Li ₃ PO ₄ , LiAl ₅ O ₈ , TiO ₂ , Co ₃ O ₄	[-78, -54]	[-109, -85]
LCO	3.59 - 3.94	Li ₃ PO ₄ , AlPO ₄ , TiO ₂ , Co ₃ O ₄	[-51, -8]	[-82, -38]
	3.94 - 4.00	Li ₃ PO ₄ , AlPO ₄ , LiTiPO ₅ , Co ₃ O ₄	[-5, -2]	[-35, -32]
	4.00 - 4.10	LATP, L _{0.5} CO	0	[-32, -32]
	4.10 - 4.22	LATP, CoO ₂	0	[-47, -32]
	4.22 - 4.53	Li_3PO_4 , AlPO ₄ , $LiTi_2(PO_4)_3$, O_2	[-2, 0]	[-38, -30]
	4.53 - 5.00	LATP, L _{0.5} CO	0	[-113, 52]
	2.00 - 2.33	N_2 , CoN, Li_3PO_4	[-124, -124]	[-191, -173]
	2.33 - 2.87	N_2 , CoO, Li ₃ PO ₄	[-137, -118]	[-233, -182]
	2.87 - 3.20	N_2 , Co_3O_4 , Li_3PO_4	[-116, -103]	[-260, -220]
	3.20 - 3.43	LiNO ₃ , Co ₃ O ₄ , Li ₃ PO ₄	[-114, -103]	[-245, -193]
LiPON _{0.46} -	3.43 - 3.57	LiNO ₃ , LiCoPO ₄ , Li ₃ PO ₄	[-123, -112]	[-359, -327]
	3.57 - 3.72	LiNO ₃ , LiCoPO ₄ , Co ₃ O ₄	[-137, -126]	[-392, -359]
LCO	3.72 - 4.18	LiNO ₃ , LiCoPO ₄ , Co ₃ (PO ₄) ₂	[-145, -137]	[-523, -404]
	4.18 - 4.23	$LiNO_3$, $CoPO_4$, $Co_3(PO_4)_2$	[-148, -146]	[-540, -529]
	4.23 - 4.48	LiNO ₃ , CoPO ₄ , Co(NO ₃) ₂	[-160, -149]	[-639, -548]
	4.48 - 4.54	LiNO ₃ , CoPO ₄ , Co(NO ₃) ₄	[-154, -153]	[-663, -647]
	4.54 - 4.60	LiCo(PO ₃) ₄ , CoPO ₄ , Co(NO ₃) ₄	[-152, -152]	[-715, -697]
	4.60 - 5.00	$Co(PO_3)_3$, $CoPO_4$, $Co(NO_3)_4$	[-152, -152]	[-918, -739]

Table S3. Phase equilibria and decomposition energies for the SE-LCO interfaces under applied potential.

$C_{\rm SE}$	C _{coating}	x _m	Phase equilibria at minimum	$\Delta E_{\rm D,min,mutua}$	$\Delta E_{\rm D,min,total}$
	_		interfacial reaction energy	(meV/atom)	(meV/atom)
Li ₃ PS ₄	Li ₄ Ti ₅ O ₁₂	0.53	TiS ₂ , Li ₃ PO ₄ , Li ₄ TiS ₄	-80	-80
	LiNbO ₃	0.54	S, Li ₂ S, Li ₃ PO ₄ , Li _{5/7} NbS ₂	-155	-155
	LiTaO ₃	0.54	S, Li ₂ S, Li ₃ PO ₄ , Li _{4/3} Ta ₂ S ₄	-49	-49
	Li ₂ SiO ₃	0.25	Li_2S , Li_3PO_4 , SiO_2	-19	-19
	Li ₃ PO ₄	/	Li ₃ PS ₄ , Li ₃ PO ₄	0	0
LLZO	Li ₄ Ti ₅ O ₁₂	0.46	La ₂ Zr ₂ O ₇ , La ₂ TiO ₅ , Li ₂ TiO ₃	-75	-78
	LiNbO ₃	0.62	LaNbO ₄ , La ₂ Zr ₂ O ₇ , Li ₃ NbO ₄	-76	-79
	LiTaO ₃	0.54	La ₃ NbO ₇ , La ₂ Zr ₂ O ₇ , Li ₃ TaO ₄	-68	-72
	Li ₂ SiO ₃	0.53	$La_2Zr_2O_7$, La_2O_3 , Li_4SiO_4	-29	-32
	Li ₃ PO ₄	/	LLZO, Li ₃ PO ₄	0	-

Table S4. The phase equilibria and decomposition energies of the coating layer interfaces with Li_3PS_4 or LLZO.

Figure S1. Calculated $\Delta E_{D,mutual}$ of a) Li₃PS₄-coating layer interfaces and b) LLZO-coating layer interfaces

