Efficient adsorption of organic dyes on a flexible single-wall

carbon nanotube film

Jian Luan,[†] Peng-Xiang Hou,[†] Chang Liu,^{*} Chao Shi, Guo-Xian Li and Hui-Ming Cheng Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China.

E-mail: <u>cliu@imr.ac.cn</u>; Fax: +86-24-23903126; Tel: +86-24-83978280

ELECTRONIC SUPPLEMENTARY INFORMATION

Experimental section

Origin of raw single-wall carbon nanotubes (SWCNTs)

The SWCNTs used in this study were purchased from Shenzhen Nanotech Port Co. Ltd, China. No further purification was performed before the fabrication of the SWCNT films.

Fabrication of flexible SWCNT films

Flexible SWCNT films were fabricated by a simple filtration method. About 20 mg of SWCNTs were ultrasonicated in 200 mL of a 0.5 wt% sodium dodecyl sulfate (SDBS) water solution. The suspension was then filtered using a porous cellulose membrane filter with a pore diameter of 0.42 mm. The sheet resistivity of the films was measured by a four-point probe meter (4-probe tech.).

Characterization

The morphology and structure of the SWCNT films were characterized by scanning electron microscopy (SEM, Nova NanoSEM 430), Raman spectroscopy (Jobin Yvon HR800), thermogravimetric analysis (NETZSCH STA 449C), and transmission electron microscopy (TEM, Tecnai F20, 200 kV). The specific surface area and pore structure of the samples were investigated with an automatic volumetric sorption analyzer (ASAP 2020 M) using N₂ as the adsorbate at -196 °C. The UV–*vis* absorption spectra were obtained using a SP-1900 UV–*vis* spectrophotometer.

HNO₃ treatment of the SWCNT films

To remove residual metal catalyst, the SWCNT films were treated by dipping in a 67% HNO₃ solution for 30 min.

Dye adsorption and desorption

Four dyes, Rhodamine B (RhB), methylene blue (MB), methylene orange (MO), and congo red (CR), were used to investigate the adsorption performance of the as-prepared SWCNT films. In a typical experiment, a SWCNT film (~5 mg) was put into an aqueous dye solution (100 mL, 10 mg L^{-1}), followed by stirring at room temperature. At predetermined time intervals of 30 min, the dye concentration was measured by using a UV-*vis* spectrophotometer at the maximum absorbance of each dye (553 nm, 664 nm, 465 nm, and 490 nm for RhB, MB, MO, and CR, respectively). For desorption, the SWCNT film containing the dye was put into ethanol followed by shaking. The adsorbed RhB gradually desorbed from the film and changed the color of the ethanol to pink. After repeatedly washing with ethanol until the solution was colorless, the SWCNT film was dried at 50 °C for 10 h for repeated use.

The dye adsorption amount q_t (mg g⁻¹) was calculated by: $q_t = (C_0 - C_t)V/W$. Where, C_0 and C_t (mg L⁻¹) are the liquid-phase concentration of dyes at the beginning and after time t (min), respectively. V (L) is the volume of the solution, and W (g) is the mass of the SWCNT film used.

SEM and TEM characterizations of the SWCNT film

As shown in Fig. S1a, the film is composed of numerous entangled CNT bundles that are tens of micrometers in length. These bundles have a clean surface and straight tube walls (Fig. S1c). HRTEM observations reveal that there is occasionally an amorphous carbon coating on the outer surface of the SWCNTs (Fig. S1d). Moreover, the walls of the SWCNTs are well resolved, indicating good structural integrity.

Fig. S1 Typical SEM images of the SWCNT films (a) before and (b) after HNO₃-treatment. (c, d) TEM images of the purified SWCNTs showing their high purity.

Raman spectroscopy of the SWCNTs

Fig. S2 shows a typical Raman spectrum of the SWCNTs excited by a 633 nm laser. The Gband is very narrow and strong, while the D-band is very weak and almost invisible. The I_G/I_D ratio was calculated to be ~62, indicating the high quality of the SWCNTs.

Fig. S2 Raman spectrum of the SWCNTs excited with a 633 nm laser.

Fig. S3 A comparison of the RhB removal performance of different carbon materials.

Fig. S4 UV–*vis* absorption spectra of (a) RhB and (b) CR solutions after 240 min in dark. The initial concentrations of RhB and CR: 10 mg L⁻¹; the amount of adsorbent: 5 mg.

Fig. S5 The UV–*vis* absorption spectra of a mixed RhB and CR aqueous dye solution in the presence of an SWCNT film.

Fig. S6 Molecular formulae of (a) MB, (b) RhB, (c) MO, and (d) CR.

Fig. S7 UV–*vis* absorption spectra of (a) MB and (b) MO solutions after different times of UV light irradiation. Inset: decolorization rates of (a) MB and (b) MO with and without SWCNTs. UV–*vis* spectra of (c) MB and (d) MO solutions after 240 min in the dark. The initial concentration of RhB was 10 mg L⁻¹ and the amount of adsorbent was 5 mg.

Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry

Fig. S8 The cycling stability of the adsorption/desorption of RhB on the SWCNT film.

Fig. S9 TGA curve of a P-SWCNT film.

Fig. S10 UV–*vis* absorption spectra of (a) MB, (b) RhB, (c) MO, and (d) CR solutions after different times of UV light irradiation in the presence of the P-SWCNT adsorbent. Inset: decolorization rates of MB, RhB, MO, and CR. The initial concentration of the MB, RhB, MO, and CR solutions was 10 mg L^{-1} and the amount of adsorbent (P-SWCNT) was 5 mg.

Fig. S11 UV–*vis* absorption spectra of (a) MB, (b) RhB, (c) MO, and (d) CR solutions after 240 min under sunlight in the presence of a SWCNT film. The initial concentration of the MB, RhB, MO, and CR was 10 mg L⁻¹ and the amount of adsorbent was 5 mg.

Dye	Adsorpter	Removal amount (mg g ⁻¹)	Reference
	CNT/Ag ₃ PO ₄	10	S1
	Ni _{1-x} Co _x Fe ₂ O ₄ /MWCNTs	1	S2
	CNT/TiO ₂	9.23	S3
	ZnO/N-CNTs	12.5	S4
	MWCNT/BiOBr	10	S5
	CdS/N-rGO	28.6	S6
	AgI-RGO	9.68	S7
	MPGC-900	73	S8
	SiO ₂ /GO	40	S9
	g-C ₃ N ₄ /SiO ₂ -HNb ₃ O ₈	3	S10
	Ti/g-C ₃ N ₄	8.33	S11
	CNG	75	S12
	$g-C_3N_4$	20	S13
KIID	g-C ₃ N ₄ /BiOBr	50	S14
	g-C ₃ N ₄ /TiO ₂	10	S15
	$SnO_{2-x}/g-C_3N_4$	10	S16
	WO ₃ NRs/g-C ₃ N ₄	9.1	S17
	Ag_3VO_4/g - C_3N_4	10	S18
	Al_2O_3/g - C_3N_4	20	S19
	CeO ₂ /C ₃ N ₄ /N-rGO	10	S20
	3D-MGFs	137	S21
	3D RGO-based hydrogels	29.44	S22
	mC/C-ZnO	5	S23
	MRGO	4.23	S24
	Ptp-CN	36.8	S25
	SiO ₂ -C ₃ N ₄	10	S26

Table S1 Comparison of the dyes adsorption performance of the SWCNT film with that of other

reported carbon or carbon-containing materials.

	Zn_2SnO_4/g - C_3N_4	5	S27
	$CuFe_2O_4/g$ - C_3N_4	18.4	S28
	Bi-Bi ₂ O ₃ /C	25	S29
	GSs	72.5	S30
	Fe ₃ O ₄ /C/Cu ₂ O	0.96	S31
	SWCNT film	190	This work
	Graphene nanosheet	111.6	S32
	Ni/C nanomaterial	175.2	S33
MB	SWCNT film	198	This work
	Fe/ordered mesoporous carbon	316	S34
	Calcium alginate/MWCNTs	606.1	\$35
	Chitosan/Fe ₂ O ₃ /MWCNTs	66.9	S36
	SWCNT film	130	This work
MO	Mesoporous carbon	294.1	S37
	Pinecone derived activated carbon	404.4	S38
	MWCNTs/Fe3O4/PANI	544.99	S 39
	SWCNT film	90	This work
	Functionalized MWNTs	148	S40
CR	Activated carbon	300	S41
	Activated carbon fibers	557	S42
	CNT/Mg(Al)O nanocomposites	1250	S43

	1		8 5	
SWCNT	Dye	UV light	Sunlight	Dark
	MB	198	192	126
	C			
	RhB	190	154	34
Original	G	°		C
Original	МО	130	100	72
		•		9
	CR	90	42	20
	0			
	MB	198	190	40
		a	a	°
	RhB	174	118	26
UNO murified	G			G
invo ₃ -puinted	MO	64	24	26
	a	°		G
	CR	64	22	10
	0			

Scheme S1 The adsorption amount (mg g⁻¹) and color change of dye solutions.

References:

- [S1] H. Xu, C. Wang, Y. H. Song, J. X. Zhu, Y. G. Xu, J. Yan, Y. X. Song and H. M. Li, Chem. Eng. J., 2014, 241, 35.
- [S2] C. Singh, S. Bansal, V. Kumar and S. Singhal, Ceram. Int., 2015, 41, 3595.
- [S3] Y. L. Xie, H. H. Qian, Y. J. Zhong, H. M. Guo and Y. Hu, Int. J. Photoenergy, 2012, 2012, 682138.
- [S4] C. Y. Yu, Y. R. Wang, Y. Liu, C. F. Guo and Y. Hu, Mater. Lett., 2013, 100, 278.
- [S5] J. X. Xia, J. Di, S. Yin, H. M. Li, L. Xu, Y. G. Xu, C. Y. Zhang and H. M. Shu, Ceram. Int., 2014, 40, 4607.
- [S6] S. L. Wang, J. J. Li, X. D. Zhou, C. C. Zheng, J. Q. Ning, Y. J. Zhong and Y. Hu, J. Mater. Chem. A, 2014, 2, 19815.
- [S7] D. A. Reddy, S. Lee, J. Choi, S. Park, R. Ma, H. Yang and T. K. Kim, *Appl. Surf. Sci.*, 2015, 341, 175.
- [S8] L. Sun, C. G. Tian, L. Wang, J. L. Zou, G. Mu and H. G. Fu, J. Mater. Chem., 2011, 21, 7232.
- [S9] J. Iturbe-Ek, J. Andrade-Martínez, R. Gómez and V. Rodríguez-González, *Mater. Lett.*, 2015, 142, 75.
- [S10] H. Q. Pan, X. K. Li, Z. J. Zhuang and C. Zhang, J. Mol. Catal. A: Chem., 2011, 345, 90.
- [S11] Y. G. Wang, Y. Z. Wang, Y. T. Chen, C. C. Yin, Y. H. Zuo and L. F. Cui, *Mater. Lett.*, 2015, 139, 72.
- [S12] Z. J. Huang, F. B. Li, B. F. Chen and G. Q. Yuan, RSC Adv., 2015, 5, 14027.
- [S13] Z. J. Huang, F. B. Li, B. F. Chen and G. Q. Yuan, Catal. Sci. Technol., 2014, 4, 4258.
- [S14] M. Q. He, D. X. Zhao, J. X. Xia, L. Xu, J. Di, H. Xu, S. Yin and H. M. Li, *Mater. Sci. Semicond. Process.*, 2015, **32**, 117.
- [S15] Z. W. Tong, D. Yang, T. X. Xiao, Y. Tian and Z. Y. Jiang, Chem. Eng. J., 2015, 260, 117.
- [S16] Y. M. He, L. H. Zhang, M. H. Fan, X. X. Wang, M. L. Walbridge, Q. Y. Nong, Y. Wu and L. H. Zhao, Sol. Energy Mater. Sol. Cells, 2015, 137, 175.
- [S17] J. L. Zhao, Z. Y. Ji, X. P. Shen, H. Zhou and L. B. Ma, Ceram. Int., 2015, 41, 5600.
- [S18] S. Z. Wu, K. Li and W. D. Zhang, Appl. Surf. Sci., 2015, 324, 324.
- [S19] F. T. Li, Y. Zhao, Q. Wang, X. J. Wang, Y. J. Hao, R. H. Liu and D. S. Zhao, J. Hazard.

Mater., 2015, 283, 371.

- [S20] L. Wang, J. Ding, Y. Y. Chai, Q. Q. Liu, J. Ren, X. Liu and W. L. Dai, *Dalton Trans.*, 2015, 44, 11223.
- [S21] Y. M. Yang, G. W. Hu, F. J. Chen, J. Liu, W. S. Liu, H. L. Zhang and B. D. Wang, Chem. Commun., 2015, 51, 14405.
- [S22] J. N. Tiwari, K. Mahesh, N. H. Le, K. C. Kemp, R. Timilsina, R. N. Tiwari and K. S. Kim, *Carbon*, 2013, 56, 173.
- [S23] F. X. Wang, L. Liang, L. Shi, M. S. Liu and J. M. Sun, Dalton Trans., 2014, 43, 16441.
- [S24] H. M. Sun, L. Y. Cao and L. H. Lu, Nano Res., 2011, 4, 550.
- [S25] S. Z. Hu, L. Ma, H. Y. Wang, L. Zhang, Y. F. Zhao and G. Wu, RSC Adv., 2015, 5, 31947.
- [S26] M. Shalom, S. Inal, D. Neher and M. Antonietti, Catal. Today, 2014, 225, 185.
- [S27] L. H. Zhang, X. X. Wang, Q. Y. Nong, H. J. Lin, B. T. Teng, Y. T. Zhang, L. H. Zhao, T. H. Wu and Y. M. He, *Appl. Surf. Sci.*, 2015, **329**, 143.
- [S28] J. Y. Shen, Z. S. Cui, Z. W. Wu, J. X. Wang, Q. Ning and X. M. Lv, Mater. Res. Innovations, 2015, 19, 187.
- [S29] S. S. Chu, C. Yang, C. G. Niu, Z. J. Li, J. D. Wang and X. T. Su, *Mater. Lett.*, 2014, 136, 366.
- [S30] J. P. Zhao, W. C. Ren and H. M. Cheng, J. Mater. Chem., 2012, 22, 20197.
- [S31] S. K. Li, F. Z. Huang, Y. Wang, Y. H. Shen, L. G. Qiu, A. J. Xie and S. J. Xu, J. Mater. Chem., 2011, 21, 7459.
- [S32] Z. J. Fan, W. Kai, J. Yan, T. Wei, L. J. Zhi, J. Feng, Y. M. Ren, L. P. Song and F. Wei, ACS Nano, 2011, 5, 191.
- [S33] J. Gong, K. Yao, J. Liu, X. Wen, X. C. Chen, Z. W. Jiang, E. Mijowska and T. Tang, *Chem. Eng. J.*, 2013, 215–216, 339.
- [S34] X. M. Peng, D. P. Huang, T. Odoom-Wubah, D. F. Fu, J. L. Huang and Q. D. Qin, J. Colloid Interf. Sci., 2014, 430, 272.
- [S35] K. Y. Sui, Y. J. Li, R. Z. Liu, Y. Zhang, X. Zhao, H. C. Liang and Y. Z. Xia, *Carbohydr. Polym.*, 2012, 90, 399.
- [S36] H. Y. Zhu, R. Jiang, L. Xiao and G. M. Zeng, Bioresour. Technol., 2010, 101, 5063.

- [S37] N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh and S. Agarwal, J. Colloid Interf. Sci., 2011, 362, 457.
- [S38] M. Samarghandi, M. Hadi, S. Moayedi and F. Askari, Iran. J. Environ. Health Sci. Eng., 2009, 6, 285.
- [S39] Y. Zhao, H. L. Chen, J. Li and C. L. Chen, J. Colloid Interf. Sci., 2015, 450, 189.
- [S40] A. K. Mishra, T. Arockiadoss and S. Ramaprabhu, Chem. Eng. J., 2010, 162, 1026.
- [S41] M. K. Purkait, A. Maiti, S. DasGupta and S. De, J. Hazard. Mater., 2007, 145, 287.
- [S42] C. Pelekani and V. L. Snoeyink, Carbon, 2001, 39, 25.
- [S43] S. X. Yang, L. Y. Wang, X. D. Zhang, W. J. Yang and G. L. Song, *Chem. Eng. J.*, 2015, 275, 315.