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Table S1. Specific capacitance (F g-1) at different current densities.

Samples 2 Ag-1 4 Ag-1 8 Ag-1 10 Ag-1 15 Ag-1 20 Ag-1 30 Ag-1 40 Ag-1 Retention

C@NM-300 633 582 520 487.5 446.25 405 352.5 320 50.55%

C@NM-500 1013 1000 886 865 776.25 695 645 550 54.27%

C@NM-700 1544 1500 1404 1388 1327 1280 1192 1170 75.97%

C@NM-900 1300 1270 1250 1220 1170 1121 1050.8 1005 77.31%

Note 1: “Retention” refers to the capacity at 40 A/g as compared with that at 2 A/g.

Table S2. Comparison of electrochemical performance of our C@Ni3S2@MoS2        

nanorods with the recently reported Ni3S2- and MoS2-based hybrid materials

Materials Capacitance (F/g) Rate Performance Capacitance retention Reference

CNT@Ni3S2 514 (4 A/g) 70.4% (13.3/4) 88% (5.3A/g, 1500) 1

Ni3S2/rGO 1015.6 (1 A/g) 87.9% (10/1) 85% (10 A/g, 1000 ) 2

NiCo2O4@Ni3S2 1601 (2 A/g) 68.9% (20/2) 83.7% (4 A/g, 2000) 3

Ni@rGO− Ni3S2 987.8 (1.5 A/g) 54.3% (20/1.5) 97.9% (12 A/g, 3000) 4

ZnO@Ni3S2 array 1529 (2 A/g) 80.4% (20/2) 42% (10 A/g, 2000) 5

Ni3S2@Ni(OH)2/3DGN

Ni3S4@MoS2

1037.5 (5.1 A/g)

1440.9 (2 A/g)

38.4% (19.8/5.1)

55.56% (20/2)

99.1% (5.9 A/g, 2000)

90.7%(10 A/g, 3000)

6

7

C@Ni3S2@MoS2 1544 (2A/g) 82.9% (20/2) 92.8% (20 A/g, 2000) Our work

Note 2: “514 (4 A/g)” means the capacitance is 514 F/g at 4 A/g,

“70.4% (13.3/4)” refers to the capacitance at 13.3 A/g is 70.4% of that at 4 A/g,

“88% (5.3A/g, 1500)”represents that the capacitance retention is 88% after 1500 cycles at 

5.3 A/g.



Table S3. Weight ratio of C, S, N and H from combustion analysis.

Samples C (%) S (%) N (%) H (%)

C@NM-300 11.01 14.03 5.14 2.09

C@NM-500 12.89 15.99 5.03 1.86

C@NM-700 16.72 13.22 5.00 1.52

C@NM-900 15.75 11.77 5.19 2.13

Fig. S1 Schematic illustration to show the formation of the C/Ni-700 nanorods.



Fig. S2 Thermogravimetric curve of C/Ni-700 nanorods.

Fig. S3 EDX elemental mapping image for carbon.



Fig. S4 Thermogravimetric curve of C@NM-700 double core-shell nanorods.



Fig. S5 Raman spectra of C/Ni-300, C/Ni-500, C/Ni-700, and C/Ni-900 nanorods. 

The insets show the ratio of (P) sp3, D (defect), Am (amorphous), G (graphite) carbon 

peaks.



Fig. S6 (a & d) FESEM images of C/Ni-300 and C@NM-300 nanorods, (b & e) 

FESEM images of C/Ni-500 and C@NM-500 nanorods, (c & f) FESEM images of 

C/Ni-900 and C@NM-900 nanorods.
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Fig. S7 Log(ip) vs. log (v) plot, where ip is the peak current and v is the scan rate, 

respectively. 



Mode of reaction:

For diffusion-controlled reaction, the peak current (ip) is proportional to the square 

root of the scan rate (v1/2), derived from the Randles–Sevcik equation:8

                                              (S1)*2/12/12/351069.2 CvADnip 

where ip is the peak current (A), n is the number of transferred electrons, A is the area 

of the electrode (cm2), D is the diffusion coefficient (cm2 s-1), v is the scan rate (V s−1) 

and C* is the bulk concentration of the analyte (mol cm-3). 

For adsorption-controlled reaction, ip is directly proportional to v:9

                                               (S2)*22 )4/(  vARTFnip

where, ip, n, v, and A have the same meaning as in Equation S1, F is the Faraday’s 

constant, R is the gas constant (J mol-1 K-1), and Γ* (mol cm-2) is concentration of the 

analyte adsorbed on the surface of the electrode.

Accordingly, log(ip) vs. log(v) was plotted in Fig. S7, which gave a slope of 0.54. As a 

result, it is concluded that the electrochemical reaction on C@Ni3S2@MoS2 nanorods 

is mainly controlled by diffusion. 



Fig. S8 Nitrogen adsorption-desorption isotherms of C@Ni3S2 and C@Ni3S2@MoS2 

nanorods.

Fig. S9 (a) CV curves at different scan rates, and (b) discharge curves at different 

current densities for C@Ni3S2@MoS2 nanorod electrode.



Detailed calculation of specific capacitance:

The specific capacitance can be calculated based on the following equation: 

 VmtIC  /

where, I/m (A/g) is the specific current density, t (t) is the discharging time, V (V) 

is the potential window for the charge-discharge process.

As shown in Fig. S9b, the discharging time of the C@Ni3S2@MoS2 nanorod electrode 

at a current density of 2 A/g is 308.9 s, the potential window is 0.4 V, so the specific 

capacitance can be calculated as: 2308.9/0.4 = 1544.5 F/g.

Fig. S10 (a) CV curves at different scan rates, and (b) specific capacitance obtained at 

different current densities for C@MoS2 nanorods (the insets of (a) and (b) show SEM 

image and XRD pattern of C@MoS2, respectively).



Fig. S11 Long-term cycling performance for the C@Ni3S2@MoS2 nanorods at a 

current density of 10 A g-1.

Fig. S12 SEM image of C@Ni3S2@MoS2 after 2000 charging-discharging cycles at a 

current density of 20 A/g. 



Fig. S13 (a) Nyquist plots of C@Ni3S2 and C@Ni3S2@MoS2 nanorod electrodes, and 

(b) Nyquist plot of C@Ni3S2@MoS2 nanorod electrode before and after 2000 charge-

discharge cycles.

Supplementary Reference

1  T. Zhu, H. B. Wu, Y. B. Wang, R. Xu and X. W. Lou, Adv. Energy Mater., 2012, 2, 1497-1502.
2  X.W. Ou, L.Gan and Z. T. Luo, J. Mater. Chem. A, 2014, 2, 19214-19220.
3  J. P. Wang, S.L. Wang, Z. C. Huang and Y. M. Yu, J. Mater. Chem. A, 2014, 2, 17595-17601.
4  D. Ghosh and C. K. Das, ACS Appl.Mater. Interfaces, 2015, 7, 1122−1131.
5  Z. C. Xing, Q. X. Chu, X. B. Ren, C. J. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi and X. P. 

Sun, J. Power Sources, 2014, 245, 17595-467.
6  W. J. Zhou, X. H. Cao, Z. Y. Zeng, W. H. Shi, Y. Y. Zhu, Q. Y. Yan, H. Liu, J. Y. Wang and H. 

Zhang, Energy Environ. Sci., 2013, 6, 2216-2221.
7  Y. Zhang, W. P. Sun, X. H. Rui, B. Li, H. T. Tan, G. L. Guo, S. Madhavi, Y. Zong and Q. Y. Yan, 

Small, 2014, 11, 3694–3702.
8  B. Xu, M. L. Ye, Y. X. Yu and W. D. Zhang, Anal. Chim. Acta., 2010,674, 20-26.
9  L. A. Berben and J. C. Peters, Chem. Commun., 2010, 46, 398-400. 


