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Table S1. Specific capacitance (F g*!) at different current densities.

Samples 2Ag! 4Ag!  8Ag! 10 Ag!' 15Ag!? 20Ag' 30Ag! 40Ag' Retention
C@NM-300 633 582 520 487.5 446.25 405 352.5 320 50.55%
C@NM-500 1013 1000 886 865 776.25 695 645 550 54.27%

C@NM-700 1544 1500 1404 1388 1327 1280 1192 1170 75.97%

C@NM-900 1300 1270 1250 1220 1170 1121 1050.8 1005 77.31%

Note 1: “Retention” refers to the capacity at 40 A/g as compared with that at 2 A/g.

Table S2. Comparison of electrochemical performance of our C@Ni;S,@MoS,

nanorods with the recently reported Ni;S,- and MoS,-based hybrid materials

Materials Capacitance (F/g) Rate Performance Capacitance retention Reference
CNT@Ni;S, 514 (4 Alg) 70.4% (13.3/4) 88% (5.3A/g, 1500) 1
Ni;S,/rGO 1015.6 (1 A/g) 87.9% (10/1) 85% (10 A/g, 1000 ) 2
NiCo,04@Ni;S, 1601 (2 A/g) 68.9% (20/2) 83.7% (4 A/g, 2000) 3
Ni@rGO— Ni;S, 987.8 (1.5 A/g) 54.3% (20/1.5) 97.9% (12 A/g, 3000) 4
ZnO@Ni;S, array 1529 (2 A/g) 80.4% (20/2) 42% (10 A/g, 2000) 5
Ni3S2@Ni(OH),/3DGN  1037.5 (5.1 A/g) 38.4% (19.8/5.1) 99.1% (5.9 A/g, 2000) 6
Ni;S;@MoS, 1440.9 (2 A/g) 55.56% (20/2) 90.7%(10 A/g, 3000) 7
C@Ni;S,@MoS, 1544 (2A/g) 82.9% (20/2) 92.8% (20 A/g, 2000) Our work

Note 2: “514 (4 A/g)” means the capacitance is 514 F/g at 4 A/g,
“70.4% (13.3/4)” refers to the capacitance at 13.3 A/g is 70.4% of that at 4 A/g,
“88% (5.3A/g, 1500) represents that the capacitance retention is 88% after 1500 cycles at

5.3 Alg.



Table S3. Weight ratio of C, S, N and H from combustion analysis.

Samples C (%) S (%) N (%) H (%)
C@NM-300 11.01 14.03 5.14 2.09
C@NM-500 12.89 15.99 5.03 1.86
C@NM-700 16.72 13.22 5.00 1.52
C@NM-900 15.75 11.77 5.19 2.13

C4H:N, 0,
]

NiCl, aqueous solution CgH,,N;NiO, C/Ni-700

Fig. S1 Schematic illustration to show the formation of the C/Ni-700 nanorods.
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Fig. S2 Thermogravimetric curve of C/Ni-700 nanorods.

Fig. S3 EDX elemental mapping image for carbon.
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Fig. S4 Thermogravimetric curve of C@NM-700 double core-shell nanorods.
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Fig. S5 Raman spectra of C/Ni-300, C/Ni-500, C/Ni-700, and C/Ni-900 nanorods.
The insets show the ratio of (P) sp3, D (defect), Am (amorphous), G (graphite) carbon

peaks.



Fig. S6 (a & d) FESEM images of C/Ni-300 and C@NM-300 nanorods, (b & e)

FESEM images of C/Ni-500 and C@NM-500 nanorods, (¢ & f) FESEM images of

C/Ni-900 and C@NM-900 nanorods.
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Fig. S7 Log(i,) vs. log (v) plot, where i, is the peak current and v is the scan rate,

respectively.



Mode of reaction:

For diffusion-controlled reaction, the peak current (i,) is proportional to the square
root of the scan rate (v'/?), derived from the Randles—Sevcik equation:®
i,=2.69x10°n"*AD" " *C" (S1)
where i, is the peak current (A), n is the number of transferred electrons, A is the area
of the electrode (cm?), D is the diffusion coefficient (cm? s'!), v is the scan rate (V s7!)
and C* is the bulk concentration of the analyte (mol cm-3).

For adsorption-controlled reaction, i, is directly proportional to v:°

i, =(n’F*/4RT)vAT" (S2)
where, 7,, n, v, and A have the same meaning as in Equation S1, F is the Faraday’s
constant, R is the gas constant (J mol-! K1), and I'* (mol cm™) is concentration of the
analyte adsorbed on the surface of the electrode.

Accordingly, log(i,) vs. log(v) was plotted in Fig. S7, which gave a slope of 0.54. As a
result, it is concluded that the electrochemical reaction on C@Ni3S,@MoS, nanorods

is mainly controlled by diffusion.
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Fig. S8 Nitrogen adsorption-desorption isotherms of C@Ni;S, and C@Ni;S,@MoS,

nanorods.
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Fig. S9 (a) CV curves at different scan rates, and (b) discharge curves at different

current densities for C@Ni3S,@MoS, nanorod electrode.



Detailed calculation of specific capacitance:

The specific capacitance can be calculated based on the following equation:
C=1xAt/(nxAV)

where, I/m (A/g) is the specific current density, A7 (t) is the discharging time, AV (V)
is the potential window for the charge-discharge process.

As shown in Fig. S9b, the discharging time of the C@Ni;S,@MoS, nanorod electrode
at a current density of 2 A/g is 308.9 s, the potential window is 0.4 V, so the specific

capacitance can be calculated as: 2{5308.9/0.4 = 1544.5 F/g.
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Fig. S10 (a) CV curves at different scan rates, and (b) specific capacitance obtained at
different current densities for C@MoS; nanorods (the insets of (a) and (b) show SEM

image and XRD pattern of C@MoS,, respectively).
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Fig. S11 Long-term cycling performance for the C@Ni;S,@MoS, nanorods at a

current density of 10 A g

Fig. S12 SEM image of C@Ni;S,@MoS,; after 2000 charging-discharging cycles at a

current density of 20 A/g.
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Fig. S13 (a) Nyquist plots of C@Ni3S, and C@Ni;S,@MoS; nanorod electrodes, and
(b) Nyquist plot of C@Ni;S,@MoS; nanorod electrode before and after 2000 charge-
discharge cycles.
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