The Hierarchical Nanowires Array of Iron Phosphide Integrated on Carbon

Fiber Paper as an Effective Electrocatalyst for Hydrogen Generation

Cuncai Lv,^a Zhen Peng, ^b Yaoxing Zhao, ^a Zhipeng Huang,^{*a} and Chi Zhang ^{*a}

^{*a*} Functional Molecular Materials Research Centre, Scientific Research Academy, Jiangsu University, Zhenjiang 212013, P. R. China.

^b School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.

* Corresponding author: Zhipeng Huang, Chi Zhang;

E-mail: zphuang@ujs.edu.cn; chizhang@ujs.edu.cn; Phone/Fax: +86-511-88797815

Electronic Supplementary Information

Synthesis 1: Synthesis of CFP-CoP NA

In this experiment, cobalt chloride carbonate hydroxide $(Co(CO_3)_{0.35}Cl_{0.20}(OH)_{1.10})$ nanowires array was grown on CFP by hydrothermal reaction at 120 °C in a 50 mL Teflon-lined stainless-steel autoclave with a piece of cleaned CFP (2 cm x 5 cm) and 40 mL aqueous solution containing $CoCl_2 \cdot 6H_2O$ (0.952 g) and $CO(NH_2)_2$ (0.240 g) for 6 hours. Afterwards, the CFP-Co(CO₃)_{0.35}Cl_{0.20}(OH)_{1.10} nanowires array was converted to CFP-CoP nanowires array (CFP-CoP NA) by phosphidation using NaH₂PO₂ (0.8 g) as phosphorus source in 350 °C tube furnace for 1 hour in N₂ flow.

Synthesis 2: Synthesis of CFP-FeP NA

In this experiment, iron oxide hydroxide (FeO(OH)) nanorods array was grown on CFP by hydrothermal reaction at 120 °C in a 50 mL Teflon-lined stainless-steel autoclave with a piece of cleaned CFP (2 cm x 5 cm) and 40 mL aqueous solution containing FeCl₃•6H₂O (0.457 g) and Na₂SO₄ (0.274 g) for 6 hours. To prepare the CFP-FeP nanorods array (CFP-FeP NA), the CFP-FeO(OH) nanorods array was annealed at 350 °C for 1 hour in tube furnace in N₂ flow using NaH₂PO₂ (0.8 g) as phosphorus source.

Synthesis 3: Synthesis of FeP nanorods powder and CFP/FeP nanorods

In this experiment, the powder of iron oxide hydroxide (FeO(OH)) nanorods was prepared by hydrothermal reaction at 120 °C in a 50 mL Teflon-lined stainless-steel autoclave with 40 mL aqueous solution containing FeCl₃•6H₂O (0.457 g) and Na₂SO₄ (0.274 g) for 6 hours. The brown product was isolated and washed by repeated centrifugation/ultrasonication with deionized water. Finally, the product was dried under vacuum at 60 °C. To prepare the powder of FeP nanorods, the FeO(OH) nanorods was annealed at 350 °C for 1 hour in tube furnace in N₂ flow using NaH₂PO₂ (0.8 g) as phosphorus source.

To prepare the CFP/FeP nanorods, FeP nanorods (10 mg) and Nafion solution (5 wt%, 80 μ L) were dispersed in 1 ml of water/ethanol (4/1, v/v) by ultrasonication (ultrasonic probe, 2 mm diameter, 130 W, 1 h) to form homogeneous ink. The dispersion (34 μ L) was dropped onto a piece of cleaned CFP, which were sealed with tape with the exception of an exposed area 0.3 cm × 0.3 cm) and dried naturally. The CFP was cleaned by sonication sequentially in acetone, water and ethanol for 10 min each prior to the drop casting of the FeP nanorods.

Figure S1. (a, b) Low- and (c) high-magnification SEM images, (d) XRD pattern of CFP-

 $Co(CO_3)_{0.35}Cl_{0.20}(OH)_{1.10}$ NA (In the panel d, the peaks of CFP are marked by \Box).

Figure S2. (a, b) Low- and (c) high-magnification SEM images, (d) XRD pattern of CFP- FeO(OH)

Figure S3. Optical photograph of the (a) Pristine CFP, (b) CFP-Co(CO₃)_{0.35}Cl_{0.20}(OH)_{1.10} NA, (c) CFP-FeO(OH) HNA, (d) CFP- FeP HNA

Figure S4. The ratio of the amount of cobalt in the CFP-FeO(OH) HNA to that in the solution after the hydrothermal growth of CFP-FeO(OH) HNA.

Figure S5. SEM image of the pristine CFP.

Figure S6. Diameter distribution of FeP HNA. The dark cyan line shows the Gaussian fitting of data.

Figure S7. XRD pattern of pristine CFP

Figure S8. (a) SEM image recorded by a high-angle annular dark-field detector. The scale bar in(a) is 2 μm. Elemental maps for the spatial distribution of (b) Fe, (c) P, (d) O and (e) Co obtained from the EDX elemental mapping of region indicated by the square in (a).

Figure S9. Optical photograph of the CFP-FeP HNA during the measurement.

Figure S10. (a) XRD pattern, (b, c) Low- and (d) high-magnification SEM images of CFP-CoP NA.

Figure S11. (a) XRD pattern, (b, c) Low- and (d) high-magnification SEM images of CFP-FeP NA.

Figure S12. (a) XRD pattern, (b, c) Low- and (d) high-magnification SEM images of FeP nanorods.

Catalyst	Substrate	Mass density (mg/cm ²)	η ₁₀ (mV)	η ₂₀ (mV)	Tafel slope (mV/dec)	J ₀ (mA/cm ²)	Electrol yte
Ni ₂ P nanoparticle ¹	Ti foil	1	117	130	$\begin{array}{c} 46_{\eta=25\text{-}125} \\ 81_{\eta=150\text{-}200} \end{array}$	3.3×10 ⁻²	0.50M H ₂ SO ₄
Ni ₂ P nanoparticle ²	GCE	0.38		140	87		0.50M H ₂ SO ₄
Ni ₁₂ P ₅ nanoparticle ³	GCE	3		141			0.50M H ₂ SO ₄
NiP ₂ nanosheet on carbon cloth ⁴	Carbon cloth	4.3		99	51	0.26	0.50M H ₂ SO ₄
CoP nanoparticle ⁵	Ti foil	0.9		95	50	1.4×10 ⁻¹	0.50M H ₂ SO ₄
CoPnanorod on carbon cloth ⁶	carbon cloth	0.92		100	51	2.8×10 ⁻¹	0.50M H ₂ SO ₄
CoP particle on carbon nanotube ⁷	GCE	0.285	122		54	1.3×10 ⁻¹	0.50M H ₂ SO ₄

Fable	S1. Summarv	of HER	performance	of rei	presentative	catalysts
I HOIV	SI Summing	OTTER	periorinance	0110	propontati ve	cului y bib

							0 50M	
Co ₂ P nanorod ⁸	GCE	1		167			H_2SO_4	
	T : 0 :1	4		(1	27	10 10 1	0.50M	
FeP nanoparticles ⁹	11 1011	1	50	61	37	4.3×10-1	H_2SO_4	
E.D. 1 10	T. C. 1	2.2		70	20	4.0.101	0.50M	
Fernanorods ¹⁰	11 I011	3.2		12	38	4.2×10-1	$\mathrm{H}_2\mathrm{SO}_4$	
Porous FePnanosheet ¹¹	GCE			325	67			
MoD nononartiala 12	CCE	0.26	125		54	8 6×10-2	0.50M	
	UCE	0.30	123		54	8.0^10-	H_2SO_4	
MoP nanoparticle ¹³	GCE			160	54	3.4×10^{-2}	0.50M	
	UCE			100	54	3.4^10	H_2SO_4	
Cu ₃ P nanowires on copper	copper	15.7	143		67	1 8×10 ⁻¹	0.50M	
foam ¹⁴	foam	15.7	145		07	1.0/10	H_2SO_4	
Ni-Mo nanopowder ¹⁵	Ti foil	1		70			2 M	
							NaOH	
Ni-Mo nanopowder ¹⁵	Ti foil	3		80			0.5 M	
							H_2SO_4	
Ni-Mo nanopowder ¹⁵	Ti foil	1	79	107			I M NaOH	
	carbon						NaOH	
Bulk MorC ¹⁶	naste	14	208	224	56 100 220	6 _{η=100-220} 1.3×10 ⁻³	0.50 M	
Durk Wi0 ₂ C	electrode	1.7	200	227	J0 _{η=100-220}		H_2SO_4	
	carbon					4.3×10^{-1} 4.2×10^{-1} 8.6×10^{-2} 3.4×10^{-2} 1.3×10^{-3} 1.4×10^{-3} 1.3×10^{-2} 3.4×10^{-2}		
Bulk MoB ¹⁶	paste	2.5	212	227	$55_{n=140-210}$		0.50 M	
	electrode						H_2SO_4	
	carbon	2	1.40		<i></i>	1 4. 10 2	0.1 M	
$Mo_2C/CNT^{1/2}$	paper	2	149		55.2	1.4×10-2	HClO ₄	
							H ₂ SO ₄ (pH	
Fe-WCN ¹⁸	RRDF	0.4	220		47 1		1)+	
	KKDL	0.4	220		4/.1		Na_2SO_4	
							(0.5 M)	
Mo ₁ Sov ¹⁹	carbon	14	177		66 4	1 3×10 ⁻²	0.1 M	
	paper					1.0 10	HClO ₄	
Mo_2C^{20}	GCE	0.357	200	210-220	055.8-64.5		0.50M	
							H_2SO_4	
Porous Mo ₂ C nanowire ²¹	GCE	0.21		150	53		0.50M	
							H_2SO_4	
Mo ₂ C on Gr ²²	GCE	0.285		~160	54		U.SUM H.SO.	
							0 50M	
MoWC nanowire ²³	GCE	1.28		~160	56	3.4 ×10 ⁻³	H ₂ SO	
	carbon					4.3×10^{-1} 4.2×10^{-1} 8.6×10^{-2} 3.4×10^{-2} 1.3×10^{-3} 1.4×10^{-3} 1.4×10^{-2} 3.4×10^{-2} 3.4×10^{-2}		0.1 M
Mo ₁ Soy-RGO ¹⁹	paper	0.47	109		62.7	3.7×10 ⁻²	HClO ₄	

Mo ₂ C/C ¹⁹	carbon paper	2	311		87.6	8.1×10 ⁻³	0.1 M HClO₄
$Co_{0.6}Mo_{1.4}N_2^{24}$	GCE	0.243	202	267		2.3×10 ⁻⁴	0.1M
	ailwar						$\frac{\text{HCIO}_4}{1 \text{ M}}$
MoS ₃ (33%)/MWCNT-NC ²⁵	electrode	0.255	206	226	$40_{\eta=135-174}$	1.35×10-4	H_2SO_4
Core-shell MoO ₃ - MoS ₂ nanowires ²⁶	FTO		254	272	$50-60_{\eta=200}$		0.5 M H ₂ SO ₄
Defect-rich MoS ₂ nanosheets ²⁷	GCE	0.285	190	214	50 _{η=120-180}	8.91×10 ⁻³	0.5 M H ₂ SO ₄
MoS ₂ @Au ²⁸	Au electrode	0.00103	226		69	9.3×10 ⁻³	0.5 M H ₂ SO ₄
amorphous MoS ₃ -CV ²⁹	GCE		211	229	$40_{\eta=170-200}$	1.3×10 ⁻⁴	1 M H ₂ SO ₄
MoS ₂ /RGO hierarchical ³⁰	GCE	0.285	154	176	41		0.5M H ₂ SO ₄
MoS ₂ /MGF ³¹	GCE	0.21	146	159	42 _{η=90-120}		0.5 M H ₂ SO ₄
MoS ₂ /CNTs ³²	glass carbon disk	0.136	184	230	44.6		0.5 M H ₂ SO ₄
Cu ₂ MoS ₄ ³³	GCE	0.0425	321		95		pH0 H ₂ SO ₄
WS ₂ /RGO ³⁴	GCE	0.4	265	292	58		0.5M H ₂ SO ₄
WS ₂ nanosheets ³⁵	GCE	0.0001-0.0002or ca. one continuous layer	233	275	55		0.5 M H ₂ SO ₄
WS ₂ nanosheets ³⁶	GCE	0.285	151	177	72	2.5×10 ⁻³	1 M H ₂ SO ₄
Cobalt-sulfide catalyst ³⁷	FTO		165	227	93		1.0 M pH 7 PBS
NiWS _x ³⁸	FTO		373	430	$96_{n=120-150}$	10-2.66	pH 7 PBS
CoWS _x ³⁸	FTO		271	311	78 _{n=120-150}	10-2.25	pH 7 PBS
CoMoS _x ³⁸	FTO		241	282	85 _{n=120-150}	10-2.89	pH 7 PBS
FeS ₂ ³⁹	GCE		192.6		62.5	7×10-4	0.5 M H ₂ SO ₄
FeSe ₂ ³⁹	GCE				65.3	3.5×10-4	0.5 M H ₂ SO ₄
$Fe_{0.43}Co_{0.57}S_2^{39}$	GCE		264		55.9	1.3×10 ⁻³	0.5 M H ₂ SO ₄
CoS ₂ ³⁹	GCE		232		44.6	6.5×10 ⁻⁵	0.5 M H ₂ SO ₄
CoSe ₂ ³⁹	GCE	0.037	231		42.4	6.5×10 ⁻⁵	0.5 M
Co _{0.56} Ni _{0.44} Se ₂ ³⁹	GCE		250		49.7	6.3×10 ⁻⁵	0.5 M

							H_2SO_4
C_{2} N: C_{39}	CCE				66.8	3 0×10-4	0.5 M
C0 _{0.32} INI _{0.68} S2 ⁻²	UCE				00.8	3.0~10	H_2SO_4
NI:C 39	CCE			11 6		1 4×10-4	0.5 M
INIS ₂	UCE				41.0	1.4^10	H_2SO_4
N.C. 39	CCE		250		56.0	5 7×10-4	0.5 M
NISe ₂ ³	GCE	250 56.9	5./×10-4	$\mathrm{H}_2\mathrm{SO}_4$			
NED /NE fail40	Ni fail	100	140		40		0.5 M
1N15P4/1N1 1011**	INI IOII		140		40		$\mathrm{H}_2\mathrm{SO}_4$
FeP/CC ⁴¹	Carbon		24	42	29.2		0.5 M
	Cloth		54	43			$\mathrm{H}_2\mathrm{SO}_4$

Figure S13. (a, b) Low- and (c) high-magnification SEM images of CFP- FeP HNA after the electrochemical measurement.

Figure S14. Nyquist plots of EIS spectra measured of CFP/FeP nanorods.

Figure S15. Equivalent circuit used to fit the EIS data. R_s is the overall series resistance, CPE₁ and R₁ are the constant phase element and resistance describing electron transport at substrate/catalyst interface, respectively, CPE_{dl} is the constant phase element of the catalyst/electrolyte interface, and R_{ct} is the charge transfer resistance at catalyst/electrolyte interface.

Table S2. The fitting results of EIS spectra									
Sample	R _s	Q _{ct}	N _{ct}	R _{ct}	Q_1	n_1	R_1		
	(Ω)	$(F \text{ cm}^{-2} \text{ S}^{n-1})$		(Ω)	(F cm ⁻² S ⁿ⁻¹)		(Ω)		
CFP- FeP HNA	1.909	5.802e-6	0.7708	12.05	0.04222	0.7398	11.01		
CFP-CoP NA	1.816	9.502e-3	0.7458	29.95	1.5e-5	0.6844	11.84		
CFP- FeP NA	2.139	1.768e-5	0.6919	64.86	3.427e-3	0.8063	10.18		
CFP/FeP nanorods	5.191	1.658e-4	0.7738	2392	8.61e-6	1	12.09		

Figure S16. The CVs in the region of -0.2 to 0.6 V vs RHE for CFP- FeP HNA, CFP-CoP NA, and CFP-FeP NA at pH 7 (scan rate: 50 mV s⁻¹).

References

- 1. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267-9270.
- 2. L. G. Feng, H. Vrubel, M. Bensimon and X. L. Hu, *Phys. Chem. Chem. Phys.*, 2014, **16**, 5917-5921.
- 3. Z. P. Huang, Z. B. Chen, Z. Z. Chen, C. C. Lv, H. Meng and C. Zhang, *Acs Nano*, 2014, **8**, 8121-8129.
- M. Gong, W. Zhou, M. Tsai, J. Zhou, M. Guan, M. Lin, B. Zhang, Y. Hu, D. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and D. Hongjie, *Nat. Commun.*, 2014, 5, 4695.
- 5. E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, *Angew. Chem. Int. Ed.*, 2014, **53**, 5427-5430.
- 6. J. Q. Tian, Q. Liu, A. M. Asiri and X. P. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 7. Q. Liu, J. Q. Tian, W. Cui, P. Jiang, N. Y. Cheng, A. M. Asiri and X. P. Sun, *Angew. Chem. Int. Ed.*, 2014, **53**, 6710-6714.
- 8. Z. P. Huang, Z. Z. Chen, Z. B. Chen, C. C. Lv, M. G. Humphrey and C. Zhang, *Nano Energy*, 2014, **9**, 373-382.
- 9. J. F. Callejas, J. M. McEnaney, C. G. Read, J. C. Crompton, A. J. Biacchi, E. J. Popczun, T. R. Gordon, N. S. Lewis and R. E. Schaak, *ACS Nano*, 2014, **8**, 11101-11107.
- 10. P. Jiang, Q. Liu, Y. H. Liang, J. Q. Tian, A. M. Asiri and X. P. Sun, *Angew. Chem. Int. Ed.*, 2014, **53**, 12855-12859.
- 11. Y. Xu, R. Wu, J. F. Zhang, Y. M. Shi and B. Zhang, *Chem. Commun.*, 2013, 49, 3.
- 12. Z. C. Xing, Q. Liu, A. M. Asiri and X. P. Sun, *Adv. Mater.*, 2014, 26, 5702-5707.
- 13. P. Xiao, M. A. Sk, L. Thia, X. M. Ge, R. J. Lim, J. Y. Wang, K. H. Lim and X. Wang, *Energ. Environ. Sci.*, 2014, 7, 2624-2629.
- 14. J. Q. Tian, Q. Liu, N. Y. Cheng, A. M. Asiri and X. P. Sun, *Angew. Chem. Int. Ed.*, 2014, **53**, 9577-9581.
- 15. J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis and H. B. Gray, *ACS Catal.*, 2013, **3**, 166-169.
- 16. H. Vrubel and X. L. Hu, Angew. Chem. Int. Ed., 2012, 51, 12703-12706.
- 17. W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu and R. R. Adzic, *Energ. Environ. Sci.*, 2013, **6**, 943-951.
- 18. Y. Zhao, K. Kamiya, K. Hashimoto and S. Nakanishi, Angew. Chem. Int. Ed., 2013, 52, 1-5.
- 19. W. F. Chen, S. Iyer, S. Iyer, K. Sasaki, C. H. Wang, Y. M. Zhu, J. T. Muckerman and E. Fujita, *Energ. Environ. Sci.*, 2013, **6**, 1818-1826.
- 20. C. J. Ge, P. Jiang, W. Cui, Z. H. Pu, Z. C. Xing, A. M. Asiri, A. Y. Obaid, X. P. Sun and J. Tian, *Electrochim. Acta*, 2014, **134**, 182-186.
- L. Liao, S. N. Wang, J. J. Xiao, X. J. Bian, Y. H. Zhang, M. D. Scanlon, X. L. Hu, Y. Tang, B. H. Liu and H. H. Girault, *Energ. Environ. Sci*, 2014, 7, 387-392.
- 22. L. F. Pan, Y. H. Li, S. Yang, P. F. Liu, M. Q. Yu and H. G. Yang, *Chem. commun.*, 2014, **50**, 13135-13137.
- 23. P. Xiao, X. M. Ge, H. B. Wang, Z. L. Liu, A. Fisher and X. Wang, *Adv. Funct. Mater.*, 2015, **25**, 1520-1526.
- 24. B. F. Cao, C. M. Veith, J. C. Neuefeind, R. R. Adzic and P. G. Khalifah, J. Am. Chem. Soc., 2013, 135, 19186-19192.

- 25. T. W. Lin, C. J. Liu and J. Y. Lin, *Appl. Catal. B- Environ.*, 2013, **134-135**, 75-82.
- 26. Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara and T. F. Jaramillo, *Nano Lett.*, 2011, **11**, 4168-4175.
- 27. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou and Y. Xie, *Adv. Mater.*, 2013, **25**, 5807-5813.
- 28. T. Y. Wang, L. Liu, Z. W. Zhu, P. Papakonstantinou, J. B. Hu and M. Li, *Energ. Environ. Sci.*, 2013, **6**, 625-633.
- 29. D. Merki, S. Fierro, H. Vrubel and X. L. Hu, *Chem. Sci.*, 2011, **2**, 1262-1267.
- 30. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 2011, 133, 7296-7299.
- 31. L. Liao, J. Zhu, X. J. Bian, L. N. Zhu, M. D. Scanlon, H. H. Girault and B. H. Liu, *Adv. Funct. Mater.*, 2013, **23**, 5326-5333.
- 32. Y. Yan, X. Ge, Z. Liu, J. Y. Wang, J. M. Lee and X. Wang, *Nanoscale*, 2013, 5, 7768-7771.
- 33. P. D. Tran, M. Nguyen, S. S. Pramana, A. Bhattacharjee, S. Y. Chiam, J. Fize, M. J. Field, V. Artero, L. H. Wong, J. Loo and J. Barber, *Energ. Environ. Sci.*, 2012, **5**, 8912-8916.
- 34. J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla and H. S. Shin, *Angew. Chem. Int. Ed.*, 2013, **52**, 13751-13754.
- 35. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, *Nat. Mater.*, 2013, **12**, 850-855.
- 36. Z. Z. Wu, B. Z. Fang, B. Arman, A. K. Sun, D. P. Wilkinson and D. Z. Wang, *Appl. Catal. B-Environ.*, 2012, **125**, 59-66.
- 37. Y. Sun, C. Liu, D. C. Grauer, J. Yano, J. R. Long, P. Yang and C. J. Chang, *J. Am. Chem. Soc.*, 2013, **135**, 17699-17702.
- 38. P. D. Tran, S. Y. Chiam, P. P. Boix, Y. Ren, S. S. Pramana, J. Fize, V. Artero and J. Barber, *Energ. Environ. Sci.*, 2013, **6**, 2452-2459.
- 39. D. S. Kong, J. J. Cha, H. T. Wang, H. R. Lee and Y. Cui, *Energ. Environ. Sci.*, 2013, **6**, 3553-3558.
- 40 M. Ledendecker, S. K. Calderón, C. Papp, H. P. Steinrück, M. Antonietti, M. Shalom, *Angew. Chem. Int. Ed.*, 2015, **54**, 1-6
- 41 X. Yang, A. Y. Lu, Y. Zhu, S. Min, M. N. Hedhili, Y. Han, K. W. Huang, L. J. Li, *Nanoscale*, 2015,7, 10974-10981