Supporting information

Semitransparent superoleophobic coatings with low sliding angles for hot liquids

based on silica nanotubes

Bucheng Li,¹ Junping Zhang,^{*,1} Ziqian Gao,¹ and Qingyun Wei²

¹ State Key Laboratory for Oxo Synthesis & Selective Oxidation and Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P.R. China

² Department of Chemistry and Environment, Weifang University of Science and Technology, Weifang, 262700, P.R. China

Corresponding Author

* E-mail: jpzhang@licp.cas.cn

Fig. S1. TEM images of acid activated MWCNTs.

Fig. S2. Images of M-MWCNTs and M-MWCNTs@PDMS in *n*-hexane. $C_{\text{M-MWCNTs}} = 1.0 \text{ mg/mL}$ and $C_{\text{PDMS}} = 1.0 \text{ mg/mL}$ in the suspension of M-MWCNTs@PDMS.

SNTs@PFDTCS coatings. $D_{MWCNTs} = 50 \text{ nm}$, $C_{M-MWCNTs} = 1.0 \text{ mg/mL}$ and $C_{PDMS} = 1.0 \text{ mg/mL}$.

Table S1. Surface chemical composition of M-MWCNTs@PDMS, SNTs and

Atomic (%)	Coatings		
	M-MWCNTs@PDMS	SNTs	SNTs@PFDTCS
С	56.37	16.88	26.89
0	24.37	54.75	13.57
Si	19.26	28.37	9.67
F	0	0	49.88

Fig. S3. (a) EDS elemental maps of C, Si and F in the SNTs@PFDTCS coating. $D_{MWCNTs} = 50 \text{ nm}, C_{M-MWCNTs} = 1.0 \text{ mg/mL} \text{ and } C_{PDMS} = 1.0 \text{ mg/mL}.$

Fig. S4. EDS spectrum of the SNTs@PFDTCS coating. $D_{MWCNTs} = 50 \text{ nm}$, $C_{M-MWCNTs} = 1.0 \text{ mg/mL}$ and $C_{PDMS} = 1.0 \text{ mg/mL}$.

Fig. S5. SEM images of the SNTs@PFDTCS coatings prepared with a D_{MWCNTs} of (a, b) 15 nm, (c, d) 30 nm, (e, f) 50 nm and (g, h) 80 nm. $C_{M-MWCNTs} = 1.0 \text{ mg/mL}$ and $C_{PDMS} = 1.0 \text{ mg/mL}$.

Fig. S6. Variation of transmittance of the (a) SNTs-coated glass slides and (b) SNTs@PFDTCS-coated glass slides with D_{MWCNTs} . $C_{M-MWCNTs} = 1.0 \text{ mg/mL}$ and $C_{PDMS} = 1.0 \text{ mg/mL}$.

Fig. S7. (a) Variation of $CA_{n-decane}$ and $SA_{n-decane}$ of the SNTs@PFDTCS coatings with spray-coating density of M-MWCNTs@PDMS on glass slides and (b) variation of transmittance of the SNTs- and SNTs@PFDTCS-coated glass slides at 600 nm with spray-coating density of M-MWCNTs@PDMS on glass slides. $D_{MWCNTs} = 50$ nm, $C_{M-MWCNTs} = 1.0$ mg/mL and $C_{PDMS} = 1.0$ mg/mL.

Movie S1. Slide of various liquid droplets off the tilted SNTs@PFDTCS coating. $D_{\text{MWCNTs}} = 50 \text{ nm}, C_{\text{M-MWCNTs}} = 1.0 \text{ mg/mL}$ and $C_{\text{PDMS}} = 1.0 \text{ mg/mL}$. This video highlights the excellent superoleophobicity of the coating.

Movie S2. Removal of sand microparticles on the SNTs@PFDTCS coating using *n*-hexadecane. $D_{\text{MWCNTs}} = 50 \text{ nm}$, $C_{\text{M-MWCNTs}} = 1.0 \text{ mg/mL}$ and $C_{\text{PDMS}} = 1.0 \text{ mg/mL}$. This video highlights the self-cleaning property of the coating using organic liquid.

Movie S3. Slide of hot water and *n*-hexadecane droplets off the tilted SNTs@PFDTCS coating. $D_{MWCNTs} = 50$ nm, $C_{M-MWCNTs} = 1.0$ mg/mL and $C_{PDMS} = 1.0$ mg/mL. This video highlights the excellent superoleophobicity of the coating for hot liquids.