Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Flexible full-solid state supercapacitor based on zinc sulfide spheres growing on carbon textile with superior charge storage

Muhammad Sufyan Javed^{a,b}, Jie Chen^a, Lin Chen^a, Yi Xi^a, CuilinZhang^a, BuyongWan^a,

ChenguoHu^a*

^aDepartment of Applied Physics, ChongqingUniversity, Chongqing 400044, P. R. China

^bDepartment of Physics, COMSATS Institute of Information Technology Lahore54000, Pakistan

*Corresponding author. Tel: +86 23 65670880; Fax: +86 23 65678362

E-mail address:<u>hucg@cqu.edu.cn(CG Hu)</u>

Figure S1: Optical photographs of carbon textile (CT). (A) Bare CT, (B) ZnS nanospheres assembled CT, (C) Annealed ZnS nanospheres assembled CT

Figure S2: Schematic diagram of the fabrication process of ZnS assembled carbon textile with annealing process

Figure S3: (A) N2 adsorption–desorption isotherm, (B) BJH adsorption pore size distribution of ZnS spheres.

Figure S4: (A) GDC curves and (B) Potential drop (IR drop) at different discharge current densities

Figure S5: (A) The comparison of CV curves of bare CT based supercapacitor and ZnS nanospheres assembled CT based supercapacitor, (B) The peak current density verses square root of scan rate.

Figure S6: (A) GDC curves and (B) Potential drop (IR drop) at different discharge current densities.

Figure S1: Optical photographs of carbon textile (CT). (A) Bare CT, (B) ZnS nanospheres assembled CT, (C) Annealed ZnS nanospheres assembled CT

Figure S2: Schematic diagram of the fabrication process of ZnS assembled carbon textile with annealing process

Figure S4: (A) GDC curves and (B) Potential drop (IR drop) at different discharge current densities

The specific capacitance (C_{sp}), energy density (ED), power density (PD) and columbic efficiency (η) of electrodes were calculated according to the following equations.⁷⁻⁹

$$C_{sp} = \frac{\int I \, dV}{M \, v \, \left(V_{\rm f} - V_{\rm i} \right)} \tag{1}$$

$$C_{arl} = \frac{C_{sp}}{A} \tag{2}$$

$$E = CV^2 \times \left(\frac{5}{36}\right) \tag{3}$$

$$P = \frac{E}{t_d} = \frac{I\Delta V}{2M} \times 1000 \tag{4}$$

Where C_{sp} (Fg⁻¹) is the specific capacitance; C_{arl} (F cm⁻²) is the areal capacitance; $\int I dV$ is the area of CV curve; A is the active area of supercapacitor; M (g) is the mass of active material on one electrode; $\Delta V = V_f - V_i$ is the potential window; v (Vs⁻¹) is the scan rate; I (A) is the applied current; P (W kg⁻¹) is the power density; E (Wh kg⁻¹) is the energy density; Δt_c and Δt_d are charging and discharging time (s) respectively.