Supplementary information for

Carbon-Embedded Mesoporous Nb-Doped TiO₂ Nanofibers as Catalyst Support for Oxidation Reduction Reaction in PEM Fuel Cells

Esmaeil Navaei Alvar, ^a Biao Zhou^{a1} and S. Holger Eichhorn^b

^a Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario, Canada.

^b Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.

Table of Contents

Koutecky-Levich Equation	
t-plots	S3
Raman peak analysis parameters and results	S4
PXRD patterns of Pt-deposited nanofibers	S6
Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy results	y (EDX) S7
X-ray photoelectron spectroscopy (XPS) survey scans	S9
High-resolution XPS scans in C 1s region	S11
High-resolution XPS scans in O 1s region	S13
High-resolution XPS scans in Ti 2p region	S15
High-resolution XPS scans in Nb 3d region	S17
High-resolution XPS scans in Pt 4f region	S19
Kroger-vink notations	S21
Electrochemical characterization results	
References	S24

¹Principal Investigator and Corresponding Author: Biao Zhou (bzhou@uwindsor.ca).

Koutecky-Levich Equation 1, 2

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B\omega^{1/2}}$$
 (S-1)

Where j is the experimentally measured current density (mA.cm⁻²), j_k is kinetic current density (mA.cm⁻²), j_d is the diffusion limiting current density (mA.rad^{1/2}.s^{-1/2}.cm⁻²) and ω is the angular velocity frequency of rotation derived from $\omega = 2\pi f/60$, *f* is the rotation rate in rpm. Constant B in Eq. (5) which is the simplified form of koutecky-Levich (K-L) equation by assuming the resistance of Nafion layer sufficiently small³, can be expressed as follow:

$$B = 0.62nFD_{0_2}^{\frac{2}{3}}C_{0_2}v^{-\frac{1}{6}}$$
 (S-2)

The theoretical values for 2-electron (n=2) and 4-electron (n=4) ORR pathways can be calculated by extracting diffusion coefficient of O_2 ($D_{02} = 1.4 \times 10^{-5} \text{ cm}^2.\text{s}^{-1}$), maximum solubility of O_2 ($C_{O2} = 1.1 \times 10^{-6} \text{ mol.cm}^{-3}$), and kinematic viscosity of O_2 ($v = 10 \times 10^{-3} \text{ cm}^2.\text{s}^{-1}$) in 0.5 M H₂SO₄ aqueous solution at room temperature from literature.⁴ t-plots

Figure S1. t-plots of all synthesized Nb_xTi_(1-x)O₂ (x = 0.1 and 0.25) nanofibers and a Vulcan XC-72R.

Raman peak analysis parameters and results

Table S1. Sadezky et al.⁵ reported vibration modes and line shapes for the best curve-fitting of first-order Raman bands for carbonaceous materials.

Band	Raman Shift (cm ⁻¹)	Vibration mode	Line shape
G	$\sim 1580 \text{ cm}^{-1}$	Ideal graphitic lattice (E _{2g} -symmetry)	Lorentzian
D1	$\sim 1350 \text{ cm}^{-1}$	Disordered graphitic lattice (graphene layer edges, A _{1g} symmetry)	Lorentzian
D2	$\sim 1620 \text{ cm}^{-1}$	Disordered graphitic lattice (surface graphene layers, E _{2g} symmetry)	Lorentzian
D3	$\sim 1500 \text{ cm}^{-1}$	Amorphous carbon	Gaussian
D4	$\sim 1200 \text{ cm}^{-1}$	Disordered graphitic lattice (A _{1g} symmetry)	Lorentzain

Table S2. Relative band area ratios of the D1-D4 bands to G band, $A_{DX-band}/A_{G-band}$ (X = 1, 2, 3, 4).

Nanofiber	Peak Area Ratio									
Name	D1/G	D2/G	D3/G	D4/G						
CE10	8.478	1.244	1.609	0.500						
CE25	6.56	0.923	1.200	0.1212						

Figure S2. Peak analyses of the ordered/disordered graphite second-order bands observed in the Raman spectra of CE-NFs. (a) CE10; and (b) CE25.

PXRD patterns of Pt-deposited nanofibers

Figure S3. PXRD patterns of 20 wt. % Pt deposited $Nb_xTi_{(1-x)}O_2$ (x = 0.1 and 0.25) nanofibers.

Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) results

Figure S4. BF-TEM and HRTEM images from (a, b) 20 wt. % Pt/C and (c, d) 20 wt. % Pt/CE-25 samples.

Figure S5. BF-TEM and HRTEM images of 20 wt. % Pt deposited CE10 nanofibers at different magnifications.

Figure S6. Dark field-TEM images and collected EDX spectra from 20 wt. % Pt deposited CE10 nanofibers.

X-ray photoelectron spectroscopy (XPS) survey scans

Figure S7. XPS survey spectra of 20 wt. % Pt deposited CF10 nanofibers.

Figure S8. XPS survey spectra of 20 wt. % Pt deposited CF25 nanofibers.

Figure S9. XPS survey spectra of 20 wt. % Pt deposited CE10 nanofibers.

Figure S10. XPS survey spectra of 20 wt. % Pt deposited CE25 nanofibers.

High-resolution XPS scans in C 1s region

Figure S11. High resolution XPS spectra of different catalysts along with component fits in C 1s region.

Sample #		CI	710			CE10			CF25			CE25				
At.% of C1s		18	8.6			47.3			20			42.4				
Chemical State	C=C, Sp ²	C-C, Sp ³	C-OH	Functional groups	C=C, Sp ²	C-C, Sp ³	C-OH	Functional groups	C=C, Sp ²	C-C, Sp ³	C-OH	Functional groups	C=C, Sp ²	C-C, Sp ³	C-OH	Functional groups
Peak Position, eV	284.51	28.81	286.31	287.71, 289.31	284.61	284.91	286.41	287.81, 289.41	284.47	284.77	286.27	287.67, 289.27	284.63	284.93	286.43	287.83, 289.43
FWHM	0.9	1.30	1.30	1.30	0.9	1.30	1.30	1.30	0.9	1.30	1.30	1.30	0.9	1.30	1.30	1.30
Area %	7	70.9	16.9	10.2	23.6	53.5	14.8	10	0.2	69.2	17.14	13.1	26.6	49.7	12	11.8
Sp ³ /Sp ²	34.45 2.26				346 1.86											

Table S3. XPS peak parameters and Area % of different components in C 1s region.

High-resolution XPS scans in O 1s region

Figure S12. High resolution XPS spectra of different catalysts along with component fits in O 1s region.

Sample #	CF10		CE10			CF25			CE25				
At.% of O1s		50.2			34.8	34.8		51.0			37.7		
Chemical State	Oxide	Adsorbed -OH	Organic oxygen										
Peak Position, eV	530.74	531.14	532.64	530.59	531.07	532.57	530.68	531.05	532.60	530.64	531.27	532.65	
FWHM	0.99	1.57	1.57	2	2	1.11	1.58	1.58	1.02	1.22	1.22	1.50	
Area %	57.1	29.6	13.3	62.2	23.8	14.0	54.7	32.3	13.0	76	14.2	9.8	

Table S4. XPS peak parameters and Area % of different components in O 1s region.

Figure S13. High resolution XPS spectra of different catalysts along with component fits in Ti 2p region.

Sample #	CF	710	CF	E10	CI	25	CE25		
At.% of Ti2p	16.2		9	.8	1	3	10.4		
Chemical State	Ti 2p _{3/2} (Ti ⁴⁺)	Ti 2p _{3/2} (Ti ³⁺)	Ti 2p _{3/2} (Ti ⁴⁺)	Ti 2p _{3/2} (Ti ³⁺)	Ti 2p _{3/2} (Ti ⁴⁺)	Ti 2p _{3/2} (Ti ³⁺)	Ti 2p _{3/2} (Ti ⁴⁺)	Ti 2p _{3/2} (Ti ³⁺)	
Peak Position, eV	459.59	463.91	459.35	457.95	459.47	458.07	459.36	457.96	
FWHM	1.05	2.00	1.11	1.88	1.08	2.00	1.12	1.88	
Area %	89.7	10.3	90.9	9.1	83.3	16.7	88.9	11.1	

Table S5. XPS peak parameters and Area % of different components in Ti 2p region.

*Peak splitting value for Ti2p spin-orbit components is 5.72 eV.

High-resolution XPS scans in Nb 3d region

Figure S14. High resolution XPS spectra of different catalysts along with component fits in Nb 3d region.

Sample #	CF10		CF	E10	CI	725	CE25		
At.% of Nb3d	1	.4	1	.2	4	.2	3.7		
Chemical state	Nb 3d _{5/2} (Nb ⁵⁺)	Nb 3d _{5/2} (Nb ⁴⁺)	Nb 3d _{5/2} (Nb ⁵⁺)	Nb 3d _{5/2} (Nb ⁴⁺)	Nb 3d _{5/2} (Nb ⁵⁺)	Nb 3d _{5/2} (Nb ⁴⁺)	Nb 3d _{5/2} (Nb ⁵⁺)	Nb 3d _{5/2} (Nb ⁴⁺)	
Peak Position, eV	208.08	206.30	207.80	206.30	207.91	206.30	207.75	206.30	
FWHM	1.13	1.13	1.26	1.26	1.21	1.21	1.24	1.24	
Area %	93.6	6.4	94.9	5.1	90.2	9.8	93.1	6.9	

Table S6. XPS peak parameters and Area % of different components in Nb 3d region.

*Peak splitting value for Nb3d spin-orbit components is 2.72 eV.

High-resolution XPS scans in Pt 4f region

Figure S15. High resolution XPS spectra of different catalysts along with component fits in Pt 4f region.

Sample #	CF10	CE10	CF25	CE25
At.% of Pt4f	10.9	6.9	11.5	5.1
Chemical state	Pt 4f _{7/2} (Pt ⁰)			
Peak Position, eV	71.10	71.07	71.03	71.05
FWHM	0.90	0.96	0.88	0.93

Table S7. XPS peak parameters and Area % of different components in Pt 4f region.

*Peak splitting value for Pt4f spin-orbit components is 3.32 eV.

Kroger-vink notations

$$\frac{1}{2}Nb_{2}O_{5} + Ti_{Ti}^{\times} \rightarrow Nb_{Ti}^{\circ} + \frac{1}{4}V_{Ti}^{''''} + TiO_{2} + \frac{1}{2}O_{2}$$
(S-3)
$$\frac{1}{2}Nb_{2}O_{5} + Ti_{Ti}^{\times} \rightarrow Nb_{Ti}^{\circ} + Ti_{Ti}^{'} + \frac{5}{2}O_{2}$$
(S-4)

Table S8. Descriptions of Kroger-vink notations used in Eqs. (3) and (4).

Kroger-vink notation	Description	
Ti_{Ti}^X	A titanium ion siting on a titanium lattice site with neutral charge	(Ti^{4+})
Nb_{Ti}°	A niobium ion sitting on a titanium lattice site with single positive charge	(Nb^{5+})
$V_{Ti}^{''''}$	A titanium vacancy with quadruple negative charge	
Ti_{Ti}	A titanium ion siting on a titanium lattice site with single negative charge	(Ti^{3+})

Electrochemical characterization results

Table S9.	Changes	on Pt	oxide	reduction	onset	potential	and	oxygen	reduction	reaction	half-
potential o	of the synt	hesizec	and c	ommercial	l cataly	ysts.					

	Before Durability Tests	3	After Durability Tests			
Catalyst	Pt Oxide Reduction	ORR E _{1/2}	Change in Onset Potential (mV)	ORR E _{1/2}		
	Onset Potential (V)	(V)		(V)		
20 wt.% Pt/CF10	0.812	0.783	10	0.768		
20 wt.% Pt/CF25	0.812	0.687	10	0.670		
20 wt.% Pt/CE10	1.13	0.835	3	0.825		
20 wt.% Pt/CE25	1.10	0.828	3	0.815		
20 wt.%Pt/C	1.16	0.836	0	0.812		
HiSpec 40 wt.% Pt/C	1.15	0.837	0	0.808		

Figure S16. ORR Linear sweep voltammograms (LSVs) recorded at a potential scan rate of 5 mV s⁻¹ and various rotation speeds along with Koutecky-Levich plots at 0.7 V for different catalysts in O₂ saturated aqueous solution of 0.5M H₂SO₄. LSVs for (a) 20 wt.%Pt/CF10; (b) 20 wt.%Pt/CF25; (c) 20 wt.%Pt/CE10; (d) 20 wt.%Pt/CE25; (e) 20 wt.%Pt/Vulcan; and (f) K-L

plots at 0.7V.

Figure S17. ORR linear sweep voltammograms of different catalysts recorded in O_2 saturated aqueous solutions of 0.5M H_2SO_4 with a potential sweep rate and rotation speed of 5 mV/s and 1600 rpm, respectively, before and after 1000 potential cycles. (a) 20 wt.% Pt/CF10; (b) 20 wt.%

Pt/CF25.

References

- 1. K. Senevirathne, V. Neburchilov, V. Alzate, R. Baker, R. Neagu, J. Zhang, S. Campbell and S. Ye, Journal of Power Sources, 2012, 220, 1-9.
- 2. V. G. Levich, Physicochemical hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 3. U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, N. M. Markovic and P. N. Ross, Electrochimica Acta, 2002, 47, 3787-3798.
- 4. C. Song and J. Zhang, in PEM Fuel Cell Electrocatalysts and Catalyst Layers, ed. J. Zhang, Springer London, 2008, DOI: 10.1007/978-1-84800-936-3_2, ch. 2, pp. 89-134.
- 5. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Pöschl, Carbon, 2005, 43, 1731-1742.