Supporting Information for

Stable High-areal-capacity Nanoarchitectured Germanium Anodes on Three-dimensional Current Collectors for Li Ion Microbatteries

Gwang-Hee Lee,^a Seun Lee,^a Chan Woo Lee,^b Changhoon Choi^a and Dong-Wan Kim^{*a}

^a School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-713,

Korea.

^b Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea.

[*] To whom correspondence should be addressed. E-mail: dwkim1@korea.ac.kr

Fig. S1 Cross-sectional FESEM images of (a, b) the Cu NNs and (d,e) the Ge-na/Cu NNs after thermal evaporation for 20 min. SEM-EDS element mapping analysis of (c) the Cu NNs and (f) the Ge-na/Cu NNs after thermal evaporation for 20 min. The EDS element color-mixing mapping is shown in (e).

Fig. S2 (a) Low-magnification TEM image and (b) HRTEM image of immature Ge-na/Cu NNs. (c) Low-magnification TEM image and (d) HRTEM image of Ge nanoarrays after 8 h of deposition.

Fig. S3 (a) SEAD pattern, (b) STEM image, and EDS mapping profile of (c) Ge and (d) O of the Ge nanoarrays at deposition time of 8 h.

Fig. S4 XRD pattern of the Ge-na/Cu NNs at a deposition time of 8 h.

Fig. S5 FESEM images at high magnification of the Ge nanoarrays at deposition times of (a) 4 h and (b)

8 h.

Fig. S6 EDS element mapping analysis of the Ge-na/Cu NNs at 4 h showing (a) EDS element color mixing mapping, where the elements are distinguished by color: (b) Ge (blue), (c) O (red), and (d) Cu (green).

Fig. S7 Cross-sectional FESEM images of the Ge-na/Cu NNs by (a) thermal evaporation for 4 h and (b)

8 h.

Fig. S8 Areal capacities of Ge based anodes.

References

- C. Yue, Y. Yu, Z. Wu, X. He, J. Wang, J. Li, C. Li, S. Wu, J. Li and J. Kang, *Nanoscale*, 2014, 6, 1817–1822.
- J. Li, C. Yue, Y. Yu, Y.-S. Chui, J. Yin, Z. Wu, C. Wang, Y. Zang, W. Lin, J. Li, S. Wu and Q. Wu, *J. Mater. Chem. A*, 2013, 1, 14344–14349.
- 3. T. Kennedy, E. Mullane, H. Geaney, M. Osiak and C. O'Dwyer, Nano Lett., 2014, 14, 716-723.
- 4. G.-H. Lee, S. J. Kown, K,-S Park, J.-G. Kang, J.-G. Park, S. Lee, J.-C. Kim, H.-W. Shim and D.-W. Kim, *Sci. Rep.*, 2014, 4, 6883.
- J. Hwang, C. Jo, M. G. Kim, J. Chun, E. Lim, S. Kim, S. Jeong, Y. Kim and J. Lee, ACS Nano, 2015, 9, 5299–5309.
- 6. G.-H. Lee, H.-W. Shim and D.-W. Kim, *Nano Energy*, 2015, **13**, 218–225.

Cycle	RC equivalent circuit model	R _s (Ω mg ⁻¹)	R _{ct} (Ω mg ⁻¹)
1st discharge	R _s CPE1	5.23	45.73
5th discharge		5.99	41.55
10th discharge		8.53	32.13
20th discharge		6.68	22.84

Table S1. RC equivalent circuit model and corresponding fitting values of the high mass electrode.

Fig. S9 Areal capacity of the Ge-na/Cu NNs with mass loading above 6 mg cm⁻².

Fig. S10 Areal capacities of all anodes.

References

- 1. W. Ren, C. Wang, L. Lu, D. Li, C. Cheng and J. Liu, J. Mater. Chem. A, 2013, 1, 13433-13438.
- C.W. Lee, S.-D. Seo, H. K. Park, S. Park, H. J. Song, D.-W. Kim and K. S. Hong, *Nanoscale*, 2015, 7, 2790–2796.
- 3. M. Kotobuki, N. Okada and K. Kanamura, Chem. Commun., 2011, 47, 6144-6146.
- C.-F. Sun, H. Zhu, M. Okada, K. Gaskell, Y. Inoue, L. Hu and Y. Wang, *Nano Lett.*, 2015, 15,703–708.
- 5. S. Jing, H. Jiang, Y. Hu and C. Li, Nanoscale, 2014, 6, 14441–14445.
- X. Wang, Y. Fu, R. A. Susantyoko, Q. Xiao, L. Sun, D. He and Q. Zhang, *Nano Energy*, 2014, 5, 91–96.
- 7. B. Wang, T. Qui, X. Li, B. L. Hao, Y. Zhang and L. Zhi, J. Mater. Chem. A, 2015, 3,494–498.
- 8. M. Tian, W. Wang, Y. Wei and R. Yang, J. Power Sources, 2012, 211, 46–51.
- N. Liu. Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao and Y. Cui, *Nat. nanotechnol.*, 2014, 9, 187–192.
- H. Zhao, N, Yuca, Z. Zheng, Y. Fu, V. S. Battaglia, G. Abdelbast, K. Zaghib and G. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 862–866.
- 11. R. Yi, J. Zai, F. Dai, M. L. Gordin and D. Wang, Nano Energy, 2014, 6, 211-218.
- 12. Z. Chen, C. Wang, J. Lopez, Z. Lu, Y. Cui and Z. Bao, Adv. Energy Mater., 2015, 5, 1401826.
- L. Hu, H. Wu, S. S. Hong, L. Cui, J. R. McDonough, S. Bohy and Y. Cui, *Chem. Commun.*, 2011, 47, 367–369.
- X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M. J. Sailor, J.-G. Zhang and J. Liu, *Nat. Commun.*, 2014, 5, 4105.
- 15. Z. Chen, J. W. F. To, C. Wang, Z. Lu, N. Liu, A. Chortos, L. Pan, F. Wei, Y. Cui and Z. Bao, *Adv. Energy, Mater.*, 2014, **4**, 1400207.
- K. E. Gregorczyk, A. C. Kozen, X. Chen, M. A. Schroeder, M. Noked, A. Cao, L. Hu and G. W. Rubloff, *ACS Nano*, 2015, 9, 464–473.

Fig. S11 EDS element color mixing mapping of the (a) low-mass electrode and (b) high-mass electrode, where the elements are distinguished by color: Ge (blue), O (red), and Cu (green). (c) Ex-situ XRD pattern of the high-mass electrode after 100th charge cycle.