Concave and Duck Web-like Platinum Nanopentagons with Enhanced Electrocatalytic Properties for Formic Acid Oxidation

Jianping Lai,^{a,b} Wenxin Niu,^a Suping Li,^a Fengxia Wu,^{a,b} Rafael Luque,*,^{a,c} and Guobao Xu*,^a

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China;

^b University of the Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, PR China.

^c Departamento de Química Orgánica, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV, Km 396, Córdoba (Spain), E-14014.

Table S1. Specific peak current density (J_s) , mass peak current density (J_m) , the residual current densities (J_{2000s}) , and Normalized J_s (%) during the 2000s test for FOR on Pt black, Pt/C, Pd/C and Pt CWPNP in 0.5M H₂SO₄ and 0.5M formic acid.

	J _s /mAcm ⁻²	$J_m/mAmg^{-1}$	$J_{2000s}/mA \ cm^{-2}$	Normalized J_s (%)
Pt black	0.21	32	0.02	11
Pt/C	0.66	108	0.14	27
Pd/C	2.52	432	0.12	5
Pt CWPNP	5.63	739	1.62	32

Table S2. Specific activity of novel Pt CWPNP catalyst compared with others

Catalysts	J _s /mAcm ⁻²	references	
Pt CWPNP	5.63	This work \Box	
Ordered Pt ₃ Ti	0.61	1	
Pt-Cu nanocube	2.29	2	
Pd/GO	5.2	3	
Branched Pt	1.5	4	
Sb/Pt _{octahedral}	2.8	5	
Pd-Ni ₂ P/C	2.2	6	
ERD PtCu ₃	3.15	7	
$Pt_7Ru_{1.5}Fe_{1.5}NW$	2.15	8	
PtCu HTBNFs	3.77	9	

Figure S1. Image of solutions before and after the solvothermal reaction. Synthetic solution: 4 mL of oleylamine and 4 mL of tri-*n*-propylamine containing 5 mg of platinum (II) acetylacetonate.

Figure S2. Large-area FESEM image of Pt CWPNP. Synthetic solution: 4 mL of oleylamine and 4 mL of tri-*n*-propylamine containing 5 mg of platinum (II) acetylacetonate.

Figure S3. FESEM image of Pt CWPNP. Synthetic solution: 4 mL of oleylamine and 4 mL of tri-*n*-propylamine containing 5 mg of platinum (II) acetylacetonate.

Figure S4. (A) TEM image of Pt CWPNP and (B) corresponding SAED pattern of Pt CWPNP.

Figure S5. HRTEM images of Pt duck-web like edges. Inset: corresponding FFT pattern.

Figure S6. EDX spectrum of Pt CWPNP.

Figure S7. XRD pattern of Pt CWPNP.

Figure S8. FESEM image of Pt nanostructures obtained in 4 mL of oleylamine and 4 mL of tri-*n*-propylamine containing 6.6 mg H_2 PtCl₆•6H₂O.

Figure S9. Large-area FESEM image (Upper) and enlarged FESEM image (Low) of Pt nanoparticles obtained in the absence of tri-*n*-propylamine (8 mL oleylamine containing 5 mg platinum (II) acetylacetonate).

Figure S10. Large-area FESEM images (Left) and enlarged FESEM images (right) of Pt nanoparticles obtained at different tri-*n*-propylamine/oleylamine volume fractions. A) 2 mL: 6 mL, B) 6 mL: 2 mL, C) 8 mL: 0 mL.

Figure S11. Large-area FESEM images (Left) and enlarged FESEM images (right) of Pt nanostructures obtained in 4 mL of oleylamine and 4 mL of A) ethylenediamine; B) *n*-Butylamine and C) tributylamine; all containing 5 mg platinum (II) acetylacetonate.

Figure S12. Fourier transforms infrared (FT-IR) spectra of pure oleylamine, tri-*n*-propylamine and the purified Pt CWPNP (product). It can be seen that some weak peaks, corresponding to v_{-NH2} , $\delta_{=CH}$, v_{-CH2} , v_{-CH3} , δ_{-NH2} , δ_{-CH2} , and some strong peaks, corresponding to δ_{-CH3} and δ_{-C-N} appeared in the FT-IR spectra of the purified Pt CWPNP, suggesting the small amount of residual adsorption of oleylamine and tri-n-propylamine on the surface of Pt CWPNP.

Figure S13. Cyclic voltammograms of Pt black, Pt/C, Pd/C and Pt CWPNP -modified glassy carbon electrodes in $0.5 \text{ M H}_2\text{SO}_4$ solution (scan rate: 50 mV/s).

Figure S14. Normalized specific peak current density (100%)-cycling numbers curve of 0.5 M H₂SO₄ containing 0.5 M formic acid for Pt black (square), Pt/C (dot), Pd/C (triangle) and Pt CWPNP (inverted triangle)-modified glassy carbon electrode.

Figure S15. SEM images of Pt CWPNP after stability tests.

References

1. H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H. D. Abruña and F. J. DiSalvo, *J. Am. Chem. Soc.*, 2008, **130**, 5452-5458.

2. D. Xu, S. Bliznakov, Z. Liu, J. Fang and N. Dimitrov, *Angew. Chem. Int. Ed.*, 2010, **49**, 1282-1285.

3. X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie and X. Wang, J. Am. Chem. Soc., 2011, 133, 3693-3695.

4. L. Ma, C. Wang, M. Gong, L. Liao, R. Long, J. Wang, D. Wu, W. Zhong, M. J. Kim, Y. Chen, Y. Xie and Y. Xiong, *ACS Nano*, 2012, **6**, 9797-9806.

5. F. J. Vidal-Iglesias, A. López-Cudero, J. Solla-Gullón and J. M. Feliu, *Angew. Chem. Int. Ed.*, 2013, **52**, 964-967.

6. J. Chang, L. Feng, C. Liu, W. Xing and X. Hu, Angew. Chem. Int. Ed., 2014, 53, 122-126.

7. Y. Jia, Y. Jiang, J. Zhang, L. Zhang, Q. Chen, Z. Xie and L. Zheng, J. Am. Chem. Soc., 2014, **136**, 3748-3751.

8. M. E. Scofield, C. Koenigsmann, L. Wang, H. Liu and S. S. Wong, *Energy Environ*. *Sci.*, 2015, **8**, 350-363.

9. S. Chen, H. Su, Y. Wang, W. Wu and J. Zeng, *Angew. Chem. Int. Ed.*, 2014, **54**, 108-113.