Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Graphene/N-doped Carbon Sandwiched Nanosheets with Ultrahigh Nitrogen

Doping for Boosting Lithium-Ion Battery

Xianghong Liu^{a,*}, Jun Zhang^{a,b}, Shaojun Guo^{c,*}, Nicola Pinna^d

^aCollege of Physics, Qingdao University, Qingdao 266071, China

^bSchool of Materials Science and Engineering, University of Jinan, Jinan 250022, China

^cDepartment of Materials Science and Engineering, & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China.

^dInstitut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany

 Table S1. Elemental composition of Ppy/GO (polypyrrole coated graphene oxide), N-carbon/rGO (N-doped carbon/reduced graphene oxide) obtained from pyrolysis of Ppy/GO, and N-carbon derived from pyrolysis of polypyrrole.

Materials —	Elemental composition (wt.%)		
	Ν	С	Н
Ppy/GO	15.3	54.9	3.7
N-carbon/rGO	15.5	74.5	1.6
N-carbon	15.7	73.2	1.3

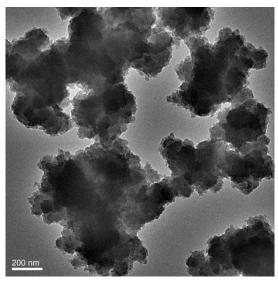


Figure S1. TEM of Ppy synthesized without using GO, showing an irregular morphology consisted of aggregated particles.

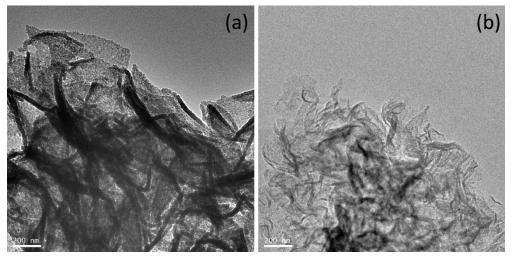


Figure S2. Overall TEM of (a) Ppy/GO and (b) N-carbon/rGO nanosheets.

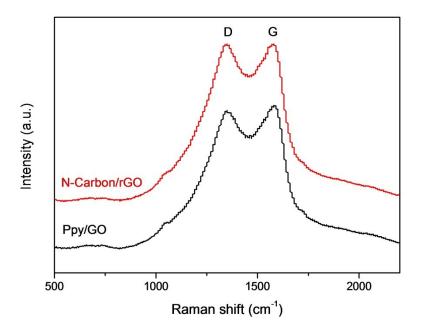
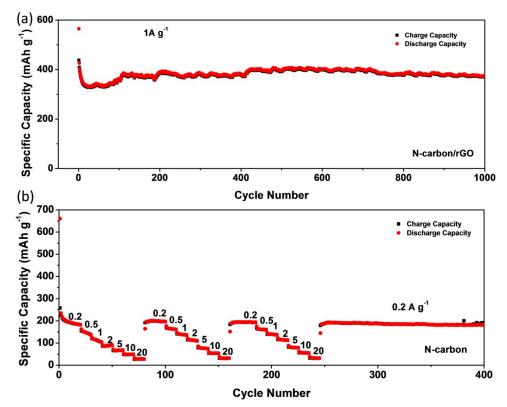



Figure S3. Raman spectra of N-carbon/rGO and Ppy/GO

Figure S4. (a) Cycling performance of N-carbon/rGO nanosheets at a high current density of 1 A g⁻¹ and (b) rate capability of N-carbon.