Supplementary material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Solution-Processed n-Doped Fullerene Cathode Interfacial Layer for Efficient and Stable Large-Area Perovskite Solar Cells

Chih-Yu Chang,*a Wen-Kuan Huang, Yu-Chia Chang, Kuan-Ting Leea and Chin-Ti Chen*b

- ^{a.} Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan 40724, R.O.C. (E-mail: changcyu@fcu.edu.tw)
- ^{b.} Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, R.O.C. (E-mail: chintchen@gate.sinica.edu.tw)

Table S1 Summary of the series and shunt resistances of the devices.

Devic	Shunt resistance [KΩ cm ²]	Series resistance $[\Omega \text{ cm}^2]$
е		
А	0.26	65.3
D	13.8	9.4

Fig. S1 Topographical AFM image of MAPbI₃ perovskite film (scale bar = 1 um).

Fig. S2 Stabilized power output measured close to the maximum power point (~0.9 V) for device B and E.

Fig. S3 The integrated photocurrent of the IPCE spectra with AM 1.5G photon flux.

Fig. S4 Topographical AFM image of CTAB-coated PC₆₁BM/MAPbI₃ film (scale bar = 500 nm).

Fig. S5 The XRD pattern of FAPbI₃ perovskite film.