Supporting information

In-situ Incorporation of FeS Nanoparticles/Carbon Nanosheets Composite with An

Interconnected Porous Structure as A High-Performance Anode for Lithium Ion

Batteries

Yuanxian Xu,^{ab} Wenyue Li,*^a Fan Zhang,^a Xiaolong Zhang,^a Wenjun Zhang,^c Chun-Sing Lee,^c Yongbing Tang*^a

a Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. E-mail: <u>tangyb@siat.ac.cn;wy.li@siat.ac.cn</u>

b Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China

c Department of Physics and Materials Science, Center of Super-Diamond and Advanced Films (COSDAF), The City University of Hong Kong, Hong Kong SAR, China

Fig. S1 XRD patterns of FeS@CNS samples with different anneal times.

Fig. S2 TGA curves of FeS@CNS, FeS and C

Fig. S3 XPS spectra for the FeS@CNS nanostructure: (a) S 2p, (b) Fe 2p spectra.

Fig. S4 SEM images of FeS (a) and FeS/C (b).

Fig. S5 Nitrogen adsorption-desorption isotherms of FeS@CNS (a), FeS/C (b) and FeS

Fig. S6 Digital photo of different samples with equal weight (500 mg).

Table S1 Comparison of the electrochemical performance of FeS@CNS with previous

reported FeS-based materials.

Materials	(Cycling stabil	ity	Rate capability		Reference
	Current	Cycling	Capability	Current	Capability	
	density	number		density		
FeS@CNS	1 A g ⁻¹	150 cycles	703 mA h g ⁻¹	5 A g ⁻¹	532 mA h g ⁻¹	This work
FeS @ carbon nanowires	0.5 C	50 cycles	400 mA h g ⁻¹	10 C	322 mA h g ⁻¹	1
FeS microsheet	0.1 A g ⁻¹	20 cycles	677 mA h g ⁻¹	2 A g ⁻¹	150 mA h g ⁻¹	2
FeS				3 mA cm ⁻¹	285 mA h g ⁻¹	3
microcrystals						
FeS@C/Carbon	0.15 C	100 cycles	420 mA h g ⁻¹	7.5 C	370 mA h g ⁻¹	4
cloth	1.2 C	200 cycles	300 mA h g ⁻¹			
FeS thin film	0.25 C	60 cycles	532 mA h g ⁻¹			5
FeS @ TiO ₂	0.8 A g ⁻¹	100 cycles	355 mA h g ⁻¹	4 A g ⁻¹	160 mA h g ⁻¹	6
	0.4 A g ⁻¹	500 cycles	430 mA h g ⁻¹			
FeS @ RGO	0.1 A g ⁻¹	40 cycles	978 mA h g ⁻¹	1 A g ⁻¹	200 mA h g ⁻¹	7
FeS @ Ag	0.1-0.2 C	55 cycles	421.7 mA h g ⁻¹			8
C @ FeS	0.1 A g ⁻¹	100 cycles	615 mA h g ⁻¹	6 A g ⁻¹	266 mA h g ⁻¹	9

FeS @ carbon	1 A g ⁻¹	50 cycles	734 mA h g ⁻¹		10
microsphere					
	5 A g ⁻¹		541 mA h g ⁻¹		

Fig. S7 (a,b) TEM images of FeS@CNS after 150 cycles at 1 A g⁻¹.

Fig. S8 SEM images of FeS (a, b) , FeS/C (c, d) and FeS@CNS (e, f) active materials before and after cycling test.

Table S2 Equivalent circuit model and corresponding fitted parameters for FeS@CNS,

Equivalent circuit	Sample	R _f /Ω	R _{ct} /Ω
$\begin{array}{c c} R_{f} & R_{ct} & Z_{w} \\ R_{a} & \Box^{-} \mathcal{W} \Box^{-} & \Box^{-} \mathcal{W} \Box^{-} \end{array}$	FeS@CNS	16.9	36.4
	FeS/C	23.6	68.1
CPE ₁ CPE ₂	FeS	30.8	84.5

FeS/C and FeS electrodes.

References

S1. C. B. Zhu, Y. R. Wen, P. A. van Aken, J. Maier, Y. Yu, *Adv. Funct. Mater.*, 2015, **25**, 2335-2343

S2. C. C. Xing, D. Zhang, K. Cao, S. M. Zhao, X. Wang, H. Y. Qin, J. B. Liu, Y. Z. Jiang, L. Meng, *J. Mater. Chem. A*, 2015, **3**, 8742-8749

S3. D. T. Tran, S. S. Zhang, J. Mater. Chem. A, 2015, 3, 12240-12246

S4. X. Wei, W. H. Li, J. A. Shi, L. Gu, Y. Yan, ACS Appl. Mater. Interfaces, 7, 27804-27809

S5. F. Liao, J. Swiatowska, V. Maurice, A. Seyeux, L. H. Klein, S. Zanna, P. Marcus, *Phys. Chem. Chem. Phys.*, 2015, **17**, 619-629

S6. X. F. Wang, Q. Y. Xiang, B. Liu, L. J. Wang, T. Luo, D. Chen, G. Z. Shen, *Sci. Rep.*, 2013, **3**, 2007

S7. L. Fei, Q. L. Lin, B. Yuan, G. Chen, P. Xie, Y. L. Li, Y. Xu, S. G. Deng, S. Smirnov, H. M. Luo, *ACS Appl. Mater. Interfaces*, 2013, **5**, 5330-5335

S8. C. C. Dong, X. D. Zheng, B. Huang, M. Lu, Appl. Surf. Sci., 2013, 265, 114-119

S9. C. Xu, Y. Zeng, X. H. Rui, N. Xiao, J. X. Zhu, W. Y. Zhang, J. Chen, W. L. Liu, H. T. Tan, H. H. Hng, Q. Y. Yan, *ACS Nano*, 2012, *6*, 4713-4721

S10. B. Wu, H. H. Song, J. S. Zhou, X. H. Chen, Chem. Commun., 2011, 47, 8653-8655