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Part 1. TEM results of AgCu-MG catalyst
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Figure S1. (a-d) TEM images, selected area diffraction patterns and, (e-f) particle size 

distribution of the AgCu-MG.
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Part 2. The method of preparation of XRD patterns and the results of AgCu-MG catalyst
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Figure S2. (a) Comparative X-ray diffraction of glass and AgCu-MG on a plain glass, (b) X-

ray diffraction of AgCu-MG on nickel foam.
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Part 3. The SEM patterns and the Elements mapping of the AgCu-MG catalyst

Figure S3. Elements mapping and the SEM image of the AgCu-MG on nickel foam.
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Part 4. Kinetic of oxygen reduction

0.3 0.6 0.9 1.2

-12

-8

-4

0

3 4 5 6 7

3

4

5

6

Pe
ak

 c
ur

re
nt

  ( m
A 

)

V1/2 (mV s-1 )1/2

 

 

 Ip=0.91338V1/2-0.21825

(a)
Cu

rre
nt

 d
en

sit
y 

(m
A)

E (V vs.RHE)

 

 

 10mV s-1- N2

 10mV s-1- O2

 20mV s-1- O2

 30mV s-1- O2

 40mV s-1- O2

 50mV s-1- O2

N2

0.3 0.6 0.9 1.2

-12

-9

-6

-3

0 AgCu-MG 
(b)

Cu
rre

nt
 d

en
sit

y 
( m

A 
cm

-2
)

E (V vs.RHE)

 

 

AgCu-NC 

 400      rpm
 900      rpm
 1600    rpm
 2500    rpm

 
0.3 0.6 0.9 1.2

-12

-9

-6

-3

0 AgCu-NC 
(c)

Cu
rre

nt
 d

en
sit

y 
( m

A 
cm

-2
)

E (V vs.RHE)

 

 

AgCu-NC* 

 400      rpm
 900      rpm
 1600    rpm
 2500    rpm

0.06 0.09 0.12 0.15

0.1

0.2

0.3

 

 

 AgCu-MG
 AgCu-NC
 AgCu-MG*

j-1
 (m

A-1
cm

2 )

-1/2 (rpm)

(d)

0.3 0.6 0.9 1.2

-12

-8

-4

0

4(e)

E (V vs.RHE)

Cu
rre

nt
 d

en
sit

y 
(m

A 
cm

-2
) AgCu-MG

 

 

 400   rpm
 900   rpm
 1600 rpm
 2500 rpm

0.3 0.6 0.9 1.2
-16

-12

-8

-4

0

E (V vs.RHE)

Cu
rre

nt
 d

en
sit

y 
(m

A 
cm

-2
)

 

 

 400   rpm
 900   rpm
 1600 rpm
 2500 rpm

(f)
AgCu-MG*

Figure S4. (a) The CV curves of the AgCu-MG catalyst in N2 and O2 saturated solution, (b) 

ORR polarization curves of the AgCu-MG, dash lines present the corresponding patterns 

AgCu-NC (AgCu nanocrstalline catalyst), (c) ORR polarization curves of the AgCu-NC, dash 

lines present the corresponding patterns after 1000 CV cycles, (d) The Koutecky-Levich plots 

at the limiting current of the AgCu-MG, AgCu-NC and AgCu-MG* catalysts, (e) ORR 

polarization curves of AgCu-MG in various rotation speeds, (f) ORR polarization curves of 

AgCu-MG* in various rotation speeds.

The reduction of O2 in alkaline electrolytes can proceed through one of two pathways. 

The first pathway is O2 directly reduction to OH− ions, which is called the four-electron 
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pathway, as equation 1, and the second pathway is O2 reduction to HO2
− ions as equation 2 

and subsequent reduction of peroxide ion to OH− as equation 3 or decomposition of peroxide 

ion as equation 4, which is called two-electron pathway: 

O2+2H2O+4e−→4OH−                             (1)

O2+H2O+2e−→HO2
−+OH−                          (2)

HO2
−+H2O+2e−→3OH−                            (3)

2HO2
−→2OH−+O2+2e−                            (4)

According to the Koutecky-Levich equations, the number (n) of electrons transferred in 

the ORR process can be obtained from the RDE results.  The Koutecky-Levich equations are 

as following:

j-1=jk
-1+ (0.62nFC0D2/3v-1/6ω1/2)-1                       (5)

jk
-1= (nFAKTC0)-1                             (6)

Where j is the measured electrode current density, jk is the kinetic current density, and ω is the 

electrode rotation rate. The value of D is 1.9×10−5 cm2/s, C0 is 1.2×10−3 mol/L, ν is 

1.1×10−2 cm2/s, and F is 96485 C/mol, A is the is the electrode area, K is the kinetic rate 

constant for catalytic reaction, T is the quantity of catalyst on the surface of the electrode.
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Part 5. XPS results of AgCu-alloy patterns
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Figure S5. (a) Full survey scan XPS before and after Ar ion etching for the AgCu-MG and 

AgCu-NC samples,(b) for the AgCu-MG* and AgCu-NC* (c) Auger lines (AES) of Cu in 

AgCu-MG before and after ion clean.(d) O1s regions in AgCu-MG before and after ion clean.
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Part 6. Schematic of AuCu-MG-based air electrode and rechargeable zinc-air battery
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Figure S6. (a) Schematic of air electrode and a zinc-air battery, and a digital photograph of 

LED lights powered by the zinc-air battery systems, (b) XPS analysis of AgCu-MG after 

discharge for 10 hours in Zn-air battery.

 

(I) For primary Zn-air system, we choose 6M KOH solution as electrolyte, electrochemical 

reactions that occur in primary Zn-air system as follows:

(1) Discharge

Zinc plate (negative electrode):

Zn + 4OH-= Zn(OH)2- 4 + 2e

(a)
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Zn(OH)2- 4 = ZnO + H2O + 2OH-

Air electrode (positive electrode):

1/2O2+ H2O + 2e = 2OH-

Overall reaction: 2Zn + O2=2ZnO

(II) For primary Zn-air system, we choose 6M KOH +0.1M Zn(CH3COO)2 solution as 

electrolyte, electrochemical reactions that occur in primary Zn-air system as follows:

(1) Discharge

Zinc plate (negative electrode):

Zn + 4OH-= Zn(OH)2- 4 + 2e

Zn(OH)2- 4 = ZnO + H2O + 2OH-

Air electrode (positive electrode):

1/2O2+ H2O + 2e = 2OH-

Overall reaction: 2Zn + O2=2ZnO

(2) Charge 

Zinc plate (cathode):

ZnO + H2O + 2OH= Zn(OH)2- 4

Zn(OH)2- 4 + 2e = Zn + 4OH-

Air electrode (anode): 

2OH- =1/2O2+ H2O + 2e

Overall reaction:

2ZnO = 2Zn + O2
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Part 7. A long-term discharge–charge cycling of two-electrode chargeable zinc–air batteries 
based on AgCu-MG catalysts
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Figure S7. (a) A discharge–charge cycling of two-electrode rechargeable zinc–air batteries 

based on AgCu-MG catalysts for more than 1000 times when only air is uesd for test, (b) 

Images of AgCu-MG catalysts on nickel foam before and after 1000 cycles, and images of the 

initial zinc plate anode and the broken zinc plate anode at 520 discharge–charge cycle, (c) 

HRTEM images of the AgCu-MG after 1200 times charge-discharge cycle, (d) The charge-

discharge curves of the AgCu-MG catalyzed cathode after 1200 times cycle. In this battery, 

the zinc anode and electrolyte were replaced.
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