Electronic Supplementary Information (ESI)

Highly efficient low temperature solution processible planar type CH3NH3PbI3 perovskite flexible solar cells

Jin Hyuck Heo, ${ }^{1}$ Min Ho Lee, ${ }^{1}$ Hye Ji Han, ${ }^{1}$ Basavaraj Rudragouda Patil, ${ }^{1}$ Jae Su Yu, ${ }^{2}$ Sang Hyuk Im ${ }^{1, *}$

Experimental

Preparation of MAPbI_{3} perovskite solution

For preparing MAPbI_{3} perovskite solution, MAI (methylammonium iodide) was initially synthesized by reacting 50 mL methylamine (40% in methanol, Junsei Chemical Co. Ltd.) with 50 mL hydriodic acid (57% in water, Aldrich) in a 250 mL round-bottom flask at $0{ }^{\circ} \mathrm{C}$ for 2 h with vigorous stirring. Solid residue was obtained by evaporating the solvent on a rotary evaporator at $50{ }^{\circ} \mathrm{C}$ for 1 h . This white solid was dissolved in ethanol, recrystallized from diethyl ether, and finally dried in a vacuum oven for 24 h at room temperature to obtain pure MAI. $40 \mathrm{wt} \% \mathrm{MAPb}_{3}$ perovskite solution was prepared by mixing 1:1 mole ratio of MAI powder and PbI_{2} (Aldrich) in $1 \mathrm{~mL} \mathrm{~N}, \mathrm{~N}$-dimethylformamide (Aldrich) at $60{ }^{\circ} \mathrm{C}$ for 30 min followed by addition of $100 \mu \mathrm{~L}$ hydriodic acid (57% in water, Aldrich).

Device fabrication

For TiO_{2} electron conductor, $\sim 50 \mathrm{~nm}$-thick dense TiO_{2} electron conducting layer was deposited on a partially etched F-doped tin oxide (FTO, Pilkington, TEC8) glass substrate (FTO glass size $=2.5 \mathrm{~cm} \times 2.5$ cm : etched area $=1 \mathrm{~cm} \times 2.5 \mathrm{~cm}$, unetched area $=1.5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$) by spray pyrolysis deposition method using 20 mM of titanium diisopropoxidebis(acetylacetonate) (Aldrich) solution at $450{ }^{\circ} \mathrm{C}$. A ZnO nanosol for ZnO electron conductor, was prepared by a reported method.[11] Briefly, 1.64 g zinc acetate dihydrate (Aldrich) and 0.5 g ethanolamine (Aldrich) were dissolved with vigorous stirring in 10 g 2methoxyethnaol (Aldrich) at $60{ }^{\circ} \mathrm{C}$ for 30 min . The ZnO nano-sol solution was then spin-coated on a cleaned indium tin oxide (ITO, AMG tech) glass substrate at 2000 rpm for 60 s and then dried at $150{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min} .40 \mathrm{wt} \% \mathrm{MAPbI}_{3}$ perovskite solution was spin-coated on the $\mathrm{TiO}_{2} / \mathrm{FTO}$ and $\mathrm{ZnO} / \mathrm{ITO}$ substrates at 3000 rpm for 200 s and dried on the hotplate at $100^{\circ} \mathrm{C}$ for 2 min . Poly-triarylamine (PTAA, EM index) hole conductor with additives was deposited on the $\mathrm{MAPb}_{3} / \mathrm{TiO}_{2} / \mathrm{FTO}$ and $\mathrm{MAPbI}_{3} / \mathrm{ZnO} / \mathrm{ITO}$
substrate by spin coating PTAA/Toluene ($15 \mathrm{mg} / 1 \mathrm{~mL}$) with $7.5 \mu \mathrm{~L}$ Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI, Aldrich)/Acetonitrile ($170 \mathrm{mg} / 1 \mathrm{~mL}$) and $7.5 \mu \mathrm{~L}$ tert-butylpyridine (t -BP, Aldrich)/Acetonitrile ($1 \mathrm{~mL} / 1 \mathrm{~mL}$) additives at 3000 rpm for 30 s . Finally, Au counter electrode was deposited by thermal evaporation. Polyethylene naphthalate (PEN) /ITO substrates were used for flexible devices. The active area was fixed at $0.16 \mathrm{~cm}^{2}$. All devices fabrication except Au deposition and measurement was conducted at air condition under controlled relative humidity below 35%.

Device characterization

The current density-voltage curves were measured by a solar simulator (Peccell, PEC-L01) with a potentiostat (IVIUM, IviumStat) at under illumination of $1 \operatorname{sun}\left(100 \mathrm{~mW} / \mathrm{cm}^{2}\right.$ AM 1.5 G$)$ and a calibrated Si-reference cell certificated by JIS (Japanese Industrial Standards). The J-V curves of all devices were measured by masking the active area with metal mask of $0.096 \mathrm{~cm}^{2}$. To measure the hysteresis of J-V curves, the forward and reverse scan rate was set to $10 \mathrm{mV} \cdot 200 \mathrm{~ms}^{-1}$ as a standard condition and was varied from $10 \mathrm{mV} \cdot 100 \mathrm{~ms}^{-1}$ to $10 \mathrm{mV} \cdot 1000 \mathrm{~ms}^{-1}$. The external quantum efficiency (EQE) was measured by a power source (ABET, 150W Xenon lamp, 13014) with a monochromator (DONGWOO OPTRON Co., Ltd., MonoRa-500i) and potentiostat (IVIUM, IviumStat). Intensity-modulated photocurrent and photovoltage were measured by potentiostat (IVIUM, IviumStat) with light emitting diode (LED) (IVIUM, IM1225).

Fig. S1. Efficiency deviations calculated from Statistics of Origin and t-test from Excel.

Fig. S2. Device stability of TiO_{2} and ZnO electron conductor based device with time and humidity variation

Fig. S3. Normalized power conversion efficiency of PEN/ITO/ZnO/MAPbI ${ }_{3} / \mathrm{PTAA} / \mathrm{Au}$ flexible solar cell with bending radius and bending cycles.

