Electronic Supplementary Information for:

Co-electrodeposited Cu₂ZnSnS₄ thin-film solar cells with over 7% efficiency

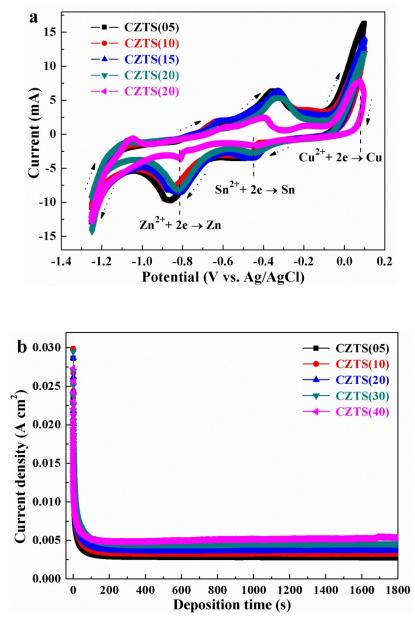
fabricated via fine-tuning of the Zn content in absorber layers

Jiahua Tao,^a Leilei Chen,^a Huiyi Cao,^a Chuanjun Zhang,^b Junfeng Liu,^a Yingbin Zhang,^a Ling Huang,^a Jinchun Jiang,^a Pingxiong Yang^a and Junhao Chu^{ab*}

^a Key Laboratory of Polar Materials and Devices (MOE), Department of Electronic Engineering, East

China Normal University, Shanghai 200241, China

^b National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy


of Sciences, Shanghai 200083, China

*Corresponding author. E-mail: jhchu@mail.sitp.ac.cn (JH. Chu).

Experimental

CdS thin films preparation

The CdS buffer layers were prepared in a radio frequency (RF) magnetron sputtering system. A sintered ceramic CdS target (99.999% purity, 2 inches diameter) was employed as source material. The separation between target and substrate was about 6 cm in the on–axis geometry. The base pressure of the deposition system was 4×10^{-5} Pa and the growth pressure was fixed at 2.7 Pa. The sputtering power was fixed at 30 W. The deposition was carried out in pure argon gas (99.999%) at a constant substrate temperature of 200 °C during 25 min after 5 min of pre–sputtering.

Figure S1. (a) Cyclic–voltammetry diagrams of aqueous electrolyte solutions with different Zn(II) concentrations used for co–electroplated Cu–Zn–Sn–S precursors on Mo/glass electrodes, scanned from 0.2 to –1.3 V at a scan rate of 10 mV s⁻¹. Arrows indicate scan directions. (b) The corresponding chronoamperograms during co–electrodeposition with constant potential at –1.15 V (vs. Ag/AgCl) for

30 min.

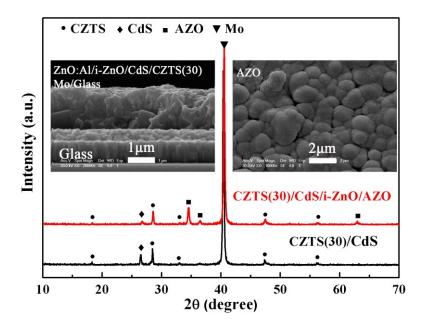


Figure S2. XRD pattern of a CdS thin film deposited on the CZTS(30)/Mo/glass substrate and then an AZO film successively deposited on CdS/CZTS(30)/Mo/glass substrate by RF magnetron sputtering. Inset cross–sectional SEM image of the CZTS thin–film solar cell, displaying the device structure of AZO/ZnO/CdS/CZTS/Mo/Glass.

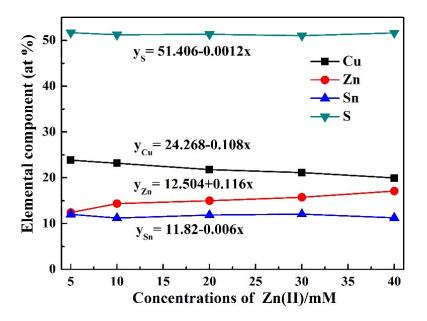


Figure S3. Dependence of Cu, Zn, Sn and S content in the sulfurized CZTS thin films as a function of different concentrations of Zn(II) concentrations in the electrolyte solutions.

Sample ID	Elemental component (at %)				Composition ratio		
	Cu	Zn	Sn	S	Cu/(Zn+Sn)	Zn/Sn	S/Metal
CZTS(05)	39.76	21.91	21.87	16.46	0.91	1.00	0.20
CZTS(10)	39.01	23.27	21.57	16.15	0.87	1.08	0.19
CZTS(20)	38.89	23.94	21.06	16.11	0.86	1.14	0.19
CZTS(30)	38.21	24.51	21.25	16.03	0.84	1.15	0.19
CZTS(40)	38.07	24.98	20.69	16.26	0.83	1.21	0.19

Table S1. Chemical compositions of the precursor films as a function of the concentration of Zn(II) in electrolyte solutions.

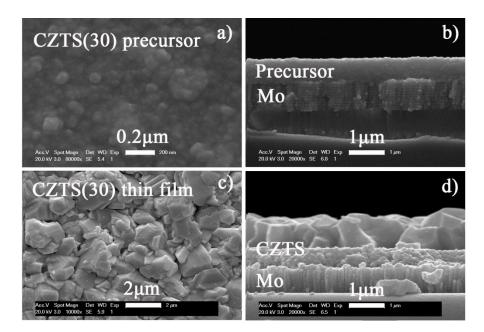
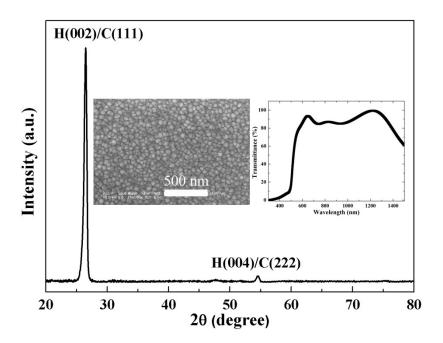



Figure S4. Surface and cross-sectional SEM images of (a and b) CZTS(30) precursor and (c and d)

CZTS(30) thin film.

Figure S5. The XRD spectra of the sputtered CdS thin film deposited on a glass substrate. Inset SEM image and optical transmittance spectra of the sputtered CdS thin film on a glass substrate, respectively.

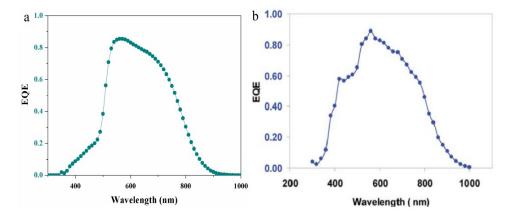


Figure S6. EQE measurements of the CZTS solar cells; (a) this work (CZTS(30) solar cell, PCE=7.23%, J_{sc} =19.2 mA cm⁻²) and (b) Ref (PCE=7.3%, J_{sc} =22 mA cm⁻²).¹

1 S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw and H. Deligianni, Adv. Energy Mater., 2012, 2, 253–259.

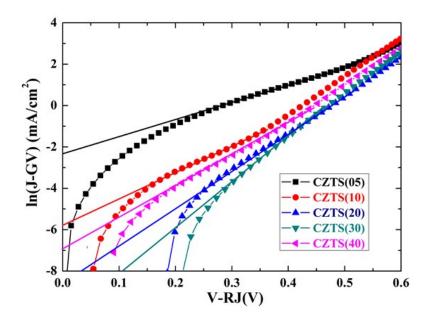


Figure S7 ln(J-GV) versus V-RJ with fit used to determine the reverse saturation current density (Jo)

for CZTS solar cells.