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I. Calculated ionization potential and electron affinity of some super 

ions 
 
Table S1 Calculated ionization potential of organic super-alkalis (methylammonium [CH3NH3]+, 
MA+;  formamidinium [HC(NH2)2]+, FA+), inorganic super-alkali, [Li3O]+, and electron affinity 
of super-halogens [MX3]− (M = Ge, Sn, Pb; X = Cl, Br, I), [BH4]−, as well as hyper-halogens 
[M(BH4)3]− (M = Ge, Sn) compared to those of the elementary ions. [M(BH4)3]− are called 
hyper- halogens as they are composed of super-halogen, [BH4]− [1]. The ionization potential is 
computed as the difference between energy of the cation state and the neutral state. The electron 
affinity is the difference between the energy of the neutral and the anion states. The energies of the 
super-alkalis and super- and hyper-halogens (commonly referred to as super-ions) are calculated 
from their relaxed geometries with corresponding ionic states. Note that the ionization potential of 
the super-alkalis are smaller than that of Li+ and the electron affinity of the super-halogens are 
(close to or) higher than that of Cl−

Alkali and Super-alkalis 
Ionization Potential (eV) 

. 
Halogen and (Super/Hyper) Halogens 

Electron Affinity (eV) 
Li 5.62 + Cl 3.71 − 

MA 4.13 + [GeCl3] 4.14 − 

FA 4.81 + [GeBr3] 4.08 − 

Cs 4.01 + [GeI3] 3.99 − 

[Li3O] 3.88 + [SnCl3] 4.40 − 

  [SnBr3] 4.25 − 

  [SnI3] 4.12 − 

  [PbBr3] 4.76 − 

  [PbI3] 4.42 − 

  [BH4] 3.42 − 

  [Ge(BH4)3] 4.46 − 

  [Sn(BH4)3] 4.41 − 
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II. Derivation of a model for band gaps of ionic crystals 
 

An archetypal example of an ionic crystal is NaCl. An ionic bond is spontaneously formed 

between Na+ and Cl−

( ) ( )2 IE alkali EA halogenh = −

 ions when the two atoms, initially far apart, are brought into the vicinity 

of each other. The bond formation first involves energy cost (i.e. ionization potential, IP) to 

ionize Na and the energy gain (i.e. electron affinity, EA) to add that electron to Cl. The net 

energy price in the process is, 

     (S1) 

Similarly, it costs the energy,  

( ) ( )1 IE halogen EA alkalih = −      (S2) 

to take the valence electron from Cl and put it on Na. The energy difference between these 

two 

1 2 h ah h χ χ χ− = − = ∆      (S3) 

is a measure of the ionicity of the bond. Note 

that ( ) ( )IE halogen EA halogenhχ = + and ( ) ( )IE alkali EA alkaliaχ = + correspond to 

Pauling’s electronegativity of the halogen and the alkali, respectively. This process can be 

represented by a one-dimensional potential well as shown in Figure S1. When the two atoms 

are far away from each other, the Coulomb interaction Vc is zero. 

 

 
Fig. S1 One-dimensional representation of an alkali (e.g. Na) and a halogen (e.g. Cl) separated far 
apart (r →∞), where the Coulomb potential is zero (Vc = 0).  
 

Spontaneous formation of the ionic bond between Na and Cl at a critical distance is made 

possible when Coulomb attraction between the two ions overcomes the energy cost h2 as 

shown in Figure S2. As the two ions come closer, they will form the molecule with a shorter 

interatomic distance at its energy minimum. 
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Fig. S2 The one-dimensional square-potential model of an ionic crystal. The unit cell, as highlighted in 
red, consists of one cation and one anion separated by the equilibrium bond length. L is the lattice 
parameter and R1 (R−) and R2 (R+) are the ionic radius of the anion and the cation, respectively. The 
energy of the whole system is lowered due to the Coulomb interaction (Vc) between the cations and 
anions. The lattice is equivalent to a series of repetitive potential barriers as indicated in the shaded 
area. AL and AR represent the electron waves moving in the x-direction on the left and right of the 
barrier, respectively, while BL and BR represent the electron wave moving in the opposite x-direction. 
 
 
 
A one-dimensional model of periodic lattice is formed with repetitive potential units as shown 

in Figure S2. The energy of the whole system will be lowered by Vc due to the Coulomb 

interaction between the cations and the anions. An electron can be viewed as moving in an 

equivalent lattice consisting of repetitive energy barriers as highlighted in the shaded area of 

Figure S2. For the convenience of calculation, we also move up the energy of the whole 

system so that the potential of the anion core (V1) in Figure S2 is zero. The cation is 

represented by a simplified core-shell model with V3 the core potential and its width the core 

radius. The difference h2 between V2 and V3 is the shell energy barrier that binds the valence 

electron to the cation core. Later we will show that, compared to h1, h2

We represent the electron by a wave packet which is the superposition of the energy 

eigenstates. These chosen states are also eigenstates of the translation operator with respect to 

the lattice constant and adopt the form of Bloch waves which are delocalized throughout the 

whole lattice. At each edge of the barrier, the wave will reflect as well as transmit. The 

reflected and transmitted waves will then interfere -- some adding constructively while some 

adding destructively -- resulting in energy bands with gaps between them. There are two 

equivalent ways to formulate this problem. One is to compute the relation between the wave 

 is small enough to be 

neglected. The resulting model potential under such approximation will become a periodic 

square potential with a step height of Δχ. In such case, the electron under consideration needs 

to tunnel through the single barrier of Δχ to move from the halogen to the alkali. A simple 

analytic form of the electron transmission probability can be obtained as will be shown in Eq. 

(S33) in the following. 
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on the left side of the barrier and the wave on the right side of the barrier, as shown in Figure 

S2 by AL/BL and AR/BR

L R

L R

A A
B B

   
= Τ   

   

, respectively [2].  

     (S4) 

T is called the transmission matrix 

11 12

21 22

t t
t t

 
Τ =  

 
.     (S5) 

This method is mathematically more convenient for the calculation, especially when there are 

multiple piecewise potential barriers between the left and right wave signals. The second 

method is to compute the relation between the incoming wave AL/BR and the outgoing wave 

AR/BL

R L

L R

S
A A
B B

   
=   

   

 in Figure S2 [2]. 

     (S6) 

S is called the scattering matrix.  

S
t r

r t

 
=   

 





,     (S7) 

where t  ( r ) and t ( r ) are the transmission (reflection) amplitudes on the left and on the right 

of the barrier, respectively. From Eq. (S4-S7), the scattering matrix can be represented by the 

elements of the transmission matrix as 

11 12 11

21 11 11

1/ /
S

/ det( ) /
t t tt r

t t tr t

  − 
= =     Τ  





,     (S8) 

where det(T) is the determinant of the transmission matrix.  

 

For a lattice system with N unit cells and periodic boundary condition, it requires TN 

t t= 

= I (the 

identity matrix),  hence det(T) = 1. This yields   

     (S9) 

according to Eq. (S8). Because of the conservation law, i.e. the incoming signal must equal 

the outgoing signal 
2 2 2 2

L R R LA B A B+ = + .    (S10) 

The scattering matrix then must be a unitary matrix 
†S S=I ,     (S11) 

where †S  is the adjoint of the scattering matrix. From Eq. (S11), we obtain 
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* * 0t r r t+ =  ,     (S12) 

We write the transmission and reflection amplitudes into complex forms as 
( 2 ), ,i i it t t e r r e r r eϕ θ θ− + ∆= = = =  ,     (S13) 

where we have used Eq. (S9). We also used the conservation law 
2 22 2t r t r+ = +  ,     (S14) 

so that  

r r= .     (S15) 

In Eq. (S13), ϕ  is the phase difference between the transmitted and the incident waves. θ  and 

( )2θ + ∆  are the phase delays of the reflected waves on the left and the right of the barrier, 

respectively. Substituting Eq. (S13) into Eq. (S12), we obtain 
( ) ( ), ,i i it T e r i R e r i Reϕ ϕ ϕ− − +∆ − −∆= = ± = ± ,     (S16) 

where 2T t=  and 2R r=  are the transmission and the reflection probability, respectively. 

 

A general electron eigenstate with energy E can be written as 

R LE a bΦ = Φ + Φ      (S17) 

with the wave incident from the left 

( )

( )
L

/ 2

/ 2

ikx ikx

ikx

e re x L

te x L

− + ≤ −
Φ = 
 ≥

     (S18) 

and from the right 

( )

( )
R

/ 2

/ 2

ikx

ikx ikx

te x L

e re x L

−

−

 ≤ −


Φ = 
 + ≥



,     (S19) 

where 

( )12 2m E V mEk
−

= =
 

     (S20) 

with V1 EΦ=0 in our setting. m is the electron mass. Since  is a Bloch wave, the wave 

function and its first derivative should satisfy 
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( ) ( )

( ) ( )' '

iqL
E E

iqL
E E

x L e x

x L e x

 Φ + = Φ


Φ + = Φ

.     (S21) 

Solving Eq. (S20), we get 
2 1cos( )

2 2
ikL ikLt rrqL e e

t t
−−

= +


.     (S22) 

Inserting Eq. (S16) into Eq. (S22), we finally obtain 

( )cos( ) cosqL kL Tϕ= − .     (S23) 

The left-hand-side (LHD) of this equation has values between [−1, 1]. The numerator on the 

right-hand-side (RHS) also has values between [−1, 1]. However, since the transmission 

probability T must be ≤1, some values of the RHS will be out of the range [−1, 1] and the 

corresponding energy will be inaccessible, hence presence of the energy band gaps. Figure S3 

is a graphical form of Eq. (S23). Solutions of Eq. (S23) are those between the two red lines, 

forming three energy bands and two energy gaps. The extreme values of the RHS correspond 

to 

( )integerkL n nϕ π− = = .     (S24) 

Eq. (S23) suggests that the band gap depends on the transmission probability T of the electron 

wave in the lattice. With smaller transmission probability, larger range of kL values will 

correspond to RHS values that are out of [−1, 1], hence larger band gaps. With certain value 

of kL (i.e. energy according to Eq. (S20)), the phase delay ϕ  of the transmission will dictate 

when Eq. (S24) is satisfied, hence will decide the position of the band gap.   
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Fig.S3 Graphical representation of Eq. (S23). The solutions of the right hand side (RHS) are within the 
range of [−1, 1] between the red lines. The black arrows indicate the positions of the extreme values 
of the periodic function ( )cos kL ϕ− on the RHS when Eq. (S24) is satisfied. 
 

In our model for (super) alkali halides, we are dealing with only one valence electron per unit 

cell. For a total of N unit cells, the first band will contain N energy states. Therefore, the band 

gap between the valence and the conduction bands of the model will be the first gap to appear. 

 

To further derive the expressions for the transmission probability T and the phase angle ϕ in 

our one-dimensional model, we note from Eq. (S10),  
2 2 2 2

L L R RA B A B− = − .     (S25) 

This can be also obtained directly from the conservation of the momentum on the left and 

right sides of the barrier 

( ) ( )2 2 2 2
L L L R R Rk A B k A B− = −       (S26) 

with L Rk k k= =  in our model. For the electron incident from the left, R 0B = , we have 

2 2

R L

L L

,A BT R
A A

= =      (S27) 

and 

L 11 R

L 21 R

A t A
B t A

   
=   

   
     (S28) 

according to Eq. (S4)-(S5). Therefore, we obtain 
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2

11

1T
t

= ,     (S29) 

where 

( ) 21
11 11 22 12

1
2 2

mit m m km
k

 = + + − 
 

.     (S30) 

ijm  in Eq. (S30) are the elements of the matrix equal to the product of the transmission 

matrices for the three barrier regions in Figure S2 – two V3 regions and one V2 

2κ

region. These 

matrix elements are cosh or sinh functions of  and 3κ  with 

( ) ( )2 2 3 32 , 2m V E m V Eκ κ= − = −  .     (S31) 

m is the electron mass. With 

3 2V V χ≈ = ∆ ,     (S32) 

the problem can be simplified significantly, and we can obtain 

( )
2

2
2

1
11 sinh 2
4

T
k R

k
κ κ

κ

=
 + + 
 

,     (S33) 

where 

( )2m Eχ
κ

∆ −
=



.     (S34) 

In our model, as shown in Figure S2, the difference between V3 and V2 is h2 in Eq. (S1) which 

is the difference between ionization potential of the cation and the electron affinity of the 

anion. Table S2 lists these values for the super alkali halides considered in this study. We can 

see that, for all the ionic bonds considered here, h2 << h1

 

, confirming that Eq. (S32) is valid. 

Thus, we will use Eq. (S33) in the following calculations. 
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TABLE S2 Calculated h1, h2, the electronegativity of super-halogen χh, the electronegativity 
of super-alkali χa and the ionicity Δχ for the super-alkali halide bonds, as defined in Eq. (S1)-
(S3). MA+ refers to methylammonium [CH3NH3]+ and FA+ refers to formamidinium 
[HC(NH2)2]+

Ionic Bond 
. 

h1 h (eV) 2 χ(eV) h χ(eV) a Δχ(eV) (eV) 

LiF 20.86 2.12 24.91 6.17 18.74 

LiCl 14.64 1.93 18.90 6.17 12.73 

LiBr 13.30 2.05 17.41 6.17 11.24 

LiI 11.67 2.34 15.51 6.17 9.34 

NaF 20.81 1.90 24.91 6.00 18.91 

NaCl 14.59 1.71 18.90 6.00 12.90 

NaBr 13.25 1.84 17.41 6.00 11.41 

NaI 11.62 2.12 15.51 6.00 9.51 

KF 20.88 0.98 24.91 5.02 19.89 

KCl 14.67 0.79 18.90 5.02 13.88 

KBr 13.32 0.91 17.41 5.02 12.39 

KI 11.69 1.20 15.51 5.02 10.49 

RbF 21.03 0.82 24.91 4.70 20.21 

RbCl 14.81 0.63 18.90 4.70 14.20 

RbBr 13.47 0.75 17.41 4.70 12.71 

RbI 11.84 1.03 15.51 4.70 10.81 

CsF 20.96 0.49 24.91 4.46 20.45 

CsCl 14.74 0.30 18.90 4.46 14.44 

CsBr 13.40 0.42 17.41 4.46 12.95 

CsI 11.76 0.71 15.51 4.46 11.05 

CsGeCl 9.48 3 0.60 13.34 4.46 8.88 

CsGeBr 8.91 3 0.57 12.78 4.46 8.32 

CsGeI 8.20 3 0.52 12.14 4.46 7.68 

CsSnCl 9.53 3 0.16 13.81 4.46 9.35 

CsSnBr 8.92 3 0.27 13.11 4.46 8.65 

CsSnI 8.23 3 0.30 12.38 4.46 7.92 

MAGeCl 10.50 3 0.77 13.34 3.61 9.73 

MAGeBr 9.92 3 0.74 12.78 3.61 9.17 

MAGeI 9.21 3 0.69 12.14 3.61 8.53 

MAGe(BH4) 9.64 3 1.13 12.12 3.61 8.51 
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MASnCl 10.54 3 0.34 13.81 3.61 10.20 

MASnBr 9.93 3 0.45 13.11 3.61 9.50 

MASnI 9.24 3 0.47 12.38 3.61 8.77 

MASn(BH4) 9.63 3 0.83 12.42 3.61 8.81 

MAPbBr 10.55 3 0.71 13.45 3.61 9.84 

MAPbI 9.67 3 0.77 12.49 3.61 8.88 

FAGeCl 11.33 3 3.10 13.34 5.10 8.24 

FAGeBr 10.75 3 3.07 12.78 5.10 7.68 

FAGeI 10.04 3 3.02 12.14 5.10 7.04 

FAGe(BH4) 10.48 3 3.45 12.12 5.10 7.02 

FASnCl 11.37 3 2.67 13.81 5.10 8.71 

FASnBr 10.76 3 2.77 13.11 5.10 8.01 

FASnI 10.07 3 2.80 12.38 5.10 7.28 

FASn(BH4) 10.45 3 3.15 12.42 5.10 7.32 

 

 

The next task is to find the expression of the phase delay in our model. Combining Eq. (S8) 

and (S30), we can write the transmitted amplitude in the S matrix as 

( ) 2111
11 22 12

1 2it T e
mt m m i km
k

ϕ−= = =
 + + − 
 

 .    (S35) 

This suggests that 

( )211 22

12 21

2coth 2
cot

/ / /
Rm m

km m k k k
κ

ϕ
κ κ

+
= =

− −
.     (S36) 

To obtain even simpler expressions for the transmission probability T (Eq. (S33)) and the 

transmission phase angle ϕ  (Eq.(S36)), we note that, numerically, the value of 22 Rκ  should 

be much larger than 1. This can be readily seen by using the ionic radii of the alkali and the 

ionicity in Table S2. The smallest value of ionicity in Table S2 is 7.7 eV, while the smallest 

ionic radius of the alkali is 0.9 Å. Given that we are only interested in the appearance of the 

first band gap, the energy of the electron is supposed to be much less than 7.7 eV. Thus, 

according to Eq. (S34), the following is valid for even the smallest 22 Rκ  

22 10 1Rκ > >> .     (S37) 

Therefore, it is fitting to write 
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( ) ( ) ( )2 22 2
2 2 2sinh 2 , cosh 2 , coth 2 1R RR e R e Rκ κκ κ κ≈ ≈ ≈ .     (S38) 

Thus, Eq. (S33) and (S36) can be further simplified as 

2

2

1

21 11 exp 4 1
4 1

T
m Rχε ε ε

ε ε

=
   ∆−

+ + −    −         (S39)

 

and 

2acot
1

1

ϕ
ε ε

ε ε

 
 
 =
 −

− − 

 ,    (S40) 

which are defined with the dimensionless quantity 

1Eε
χ

= ≤
∆

.     (S41) 

Eq. (S39) suggests that the transmission probability decreases exponentially as energy 

decreases and cation radius R2 ϕ increases. Figure S4 shows the simulated value of against ε . 

Note that ϕ  increases monotonically with the increase of ε . 

 

 
Fig. S4 Simulated transmission probability and transmission phase angle φ changed with ε. 
 

 

To sum up, the transmission probability T determines the magnitude of the band gaps. The 

expression for T in Eq. S39 shows that higher bonding ionicity χ∆ can result in less 

transmission probability, hence larger band gap (measured in kL ). The transmission phase 
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delay ϕ  can determine the position of the band gap through Eq. S23-S24. According to the 

simulated values as shown in Figure S4, ϕ  will increase monotonically with the ratio 

between the electron energy and the bonding ionicity χ∆ . Decreasing the ionicity will 

increase such ratio, hence φ will also increase. The position of the band gap (in other words, 

the energy of the maximum of the valence band) will move upwards in energy with the 

increase (decrease) of φ (ionicity). As the band gap is measured in kL  shown in Figure S3, 

the material with larger lattice size L (= 2R+ + 2R−

III. Effects of the ionicity ∆χ and Coulomb potential V

 in Fig. S2) will have smaller energy gap. 

 

 

 

c

 

According to the simulated phase delay 

 on the band gap 

position 

ϕ  (Eq. S40) in Fig. S4 in the previous section, ϕ  

increases with reduced ionicity χ∆ . Therefore, as stated in the paper, the band gap position 

(equivalent to the position of the valence band maximum) will move upwards in energy with 

increasing ϕ hence decreasing ionicity χ∆  according to Eq. S23-S24. Recall that, in our 

model, we move the whole system up ( )CV χ+ ∆  to make V1 

( )CV χ+ ∆

= 0 (see Fig. S2). To compare 

the positions of the maximum of the valence band between different super-alkali halides, we 

also have to subtract the corresponding  from the energy of each material. For 

materials with lower ionicity, both CV  and χ∆  will be smaller compared to that of the more 

ionic materials, hence will increase the maximum of the valence band further. 
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IV. Results of the molecular dynamics simulations 
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Fig. S5 Free energy and temperature from the molecular dynamics simulations under ambient 
conditions calculated using 3×3×3 supercells in the NpT ensemble. The lattice parameters are 
simulated for 4 ps after the energy and temperature reach equilibrium. 
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V. Simulated X-ray diffraction pattern 

 
Fig. S6 Simulated X-ray diffraction (XRD) patterns (in red) for the averaged configurations 
obtained from the molecular dynamics simulations of hybrid perovskites under ambient 
conditions. These are compared to the XRD patterns (in black) of crystal phases that are 
usually seen in the hybrid perovskites. The blue line is the pattern of MAGe(BH4)3 after 
equilibrium starting from a 3×3×2 supercell with Pnma (orthorhombic) unit cell. This is to 
show that the crystal structure of the material indeed tends to be stable at a rhombohedral or 
cubic structure under the simulated ambient condition, as shown by the three peaks around 
20º that start to merge into one peak and the many peaks between 30º~40º that start to merge 
into three major peaks. The orange pattern of FASnBr3 is not any one of the experimental 
patterns given in the plot and we impose a tetragonal lattice to the material in the study.  
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VI. Effective ionic radii of the super ions 

 
According to our model discussed in section II and III, the band gap of super alkali halides is 

dependent on the bonding ionicity and the ionic radii of the cation and anion. For elements in 

the periodic table, different methods for ionic radii have been developed. One direct method is 

to measure the bond lengths of binary materials using diffraction techniques. Then, by using 

the oxygen radius as a reference, a set of radii can be defined for all the other elements in the 

periodic table.  

 

A less direct method to define the effective ionic radius of an ion is to use the relationship 

between the polarizability and the radius of a spherical electron cloud. The relationship is 
3

04 Rα πε= ,     (S43) 

where α  is the electric polarizability calculated from the dipole moment arising from the 

movement of a spherical electron cloud off-center compared to the positive charge center. R is 

defined as the ionic radius. According to the Lorentz equation, the volume associated with the 

polarizability of a molecule is expressed as, 

( )
2

m m 2
0

1 1
4 1 4i

i

nV
l n

α α
πε π

−
= =

− +
∑ ,     (S44) 

where iα  is the polarizability of the i th ion in the molecule as defined in Eq. (S43). Vm

( )
3 3

h a m
1

1 4
R R V

l
ε

ε π
−

+ =
− +

 is the 

volume of the crystal divided by the number of molecules in the crystal. n is the refractive 

index and l is the Lorentz factor. For ideal ionic structures like the alkali halides with the local 

field included, l = 4π/3. Without considering the local field, the system is like an electron gas 

where l = 0. For a binary ionic crystal, according to Eq. (S44), we can write 

,     (S45) 

where we have used the relationship between the dielectric constant of the material refractive 

index 2nε = . hR  and aR  are the defined as the ionic radii of the halogen and the alkali, 

respectively. Combined with the bond length equation, as in our model, 

h a 2
LR R+ =      (S46) 

the two ionic radii can be readily solved.  
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It is possible for us to define the ionic radius of a super-ion by using the same method. For 

each super-ion with a given geometry, we can define an effective ionic radius by mapping the 

super-ion to a spherical ion that has the same polarizability,  

( )
eff eff 3 3

sh sa sh sa sh sa m
1

1 4
R R V

l
εα α α α

ε π
−

+ = + = + =
− +

.     (S47) 

The dielectric constant ε  can be measured or computed for the super alkali halides. 

 

Here, we define the effective ionic radius of a super-ion for the first time. Not only because 

we can use the radius in the model, more importantly, knowing the radii of the super-ions 

would be very helpful for the analysis of structural stability of materials composed of super-

ions, as already seen in alkali halide crystals where the physical properties are by in large 

decided by the ratio of the cation and the anion radius (Pauling’s rules).  

 

Unlike the regular ions, the super-alkalis and super-halogens are themselves atomic clusters, 

hence have their own geometry with internal degrees of freedom. Although the chemical 

formula suggests that [MA or FA]+:[MX3]− (M = Ge, Sn; X = Cl, Br, I, BH4) must equal to 

1 : 1 in the material composition, in order to define their ionic radii, the cations [MA]+ and 

[FA]+ as well as the anions [MX3]− should appear explicitly in the materials. A direct 

demonstration is to show that their geometrical structures change little across different 

materials.  

 

Table S3 lists the unit cells and the super cells of all the studied super alkali halides under 

ambient condition by using either simulated or experimental data. Figure S6 shows the 

simulated X-ray diffraction patterns of the averaged configurations calculated from the 

molecular dynamics simulations under the ambient condition (Figure S5). The cation MA+ 

adopts a polyhedral shape consisting of CH3 and NH3 pyramids embedded opposite to each 

other. FA+ adopts a planar shape consisting of a CH3 triangle between two NH3 triangles. The 

anions [GeCl3]−, [GeBr3]−, [GeI3]−, [Ge(BH4)3]− and [SnCl3]− are pyramids with the metal 

atom at the peak. The anions [SnBr3]− and [SnI3]−

 

, on the other hand, tend to be square 

pyramids with the metal atom at the center of the bottom square.  
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TABLE S3. Experimental or simulated crystal structures of the studied hybrid perovskites 
under ambient conditions. For the simulated structures, the crystal system and the lattice 
parameters are obtained from molecular dynamic simulations using the NpT ensemble (Figure 
S5) and the simulated X-ray diffraction patterns of the averaged configurations (Figure S6). 
The positions of ions in the unit cell were then relaxed with fixed lattice parameters. It was 
found that [SnBr3]− can be grouped both as a pyramid and as a square pyramid in the 
MASnBr3 crystal with cutoff radii of 2.925 and 2.956 Å, respectively. The same was observed 
for the FASnBr3 crystal, where the two cutoff radii are 2.954 and 3.104 Å, respectively. The 
last row shows the cubic phase that all the hybrid perovskites tend to have at high 
temperatures. The cation in such a case is represented by a dummy atom. The highlighted (in 
yellow) super ions show that the materials have 6 or 8 coordination number, as normally seen 
in the alkali halide structures. 

 
Crystal Unit Cell Supercell 

MAGe(BH4)3 

Rhombohedral 

  

MAGeCl3 

Orthorhombic 

  

MAGeBr3 

Tetragonal 
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MAGeI3 

Tetragonal 

  

MASn(BH4)3 

Rhombohedral 

  

MASnCl3 

Monoclinic 

 

 

MASnBr3 

Tetragonal 
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CsSnCl3(RT) 

Monoclinic 

  

 
Crystal Unit Cell Supercell 

FAGe(BH4)3 

Rhombohedral 

  

FAGeCl3 

Rhombonedral 

  

FAGeBr3 

Tetragonal 
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FAGeI3 

Tetragonal 

  

FASn(BH4)3 

Rhombohedral 

  

FASnCl3 

Rhombohedral 

  

FASnBr3 

Tetragonal 

  

 
Crystal Unit Cell Supercell 
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MASnBr3 

  

MASnI3 

  

 
Crystal Unit Cell Supercell 

FASnBr3 

Tetragonal 

  

FASnI 3 

Tetragonal 
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Crystal Unit Cell Supercell 

High-temperature 

cubic phase 

  

 

 

 

Table S4 shows the geometrical data of the above mentioned super-alkalis and super-halogens. 

For the super-alkalis, it is clear that their structures almost remain the same in different 

materials and hardly change from that of its isolated cluster geometry. We use the same color 

to represent the structural data of the same super halogen in different materials, which shows 

very little change between different materials. A typical relative difference in both the 

distance and the angle data between the structures in vacuum and in the crystal field is smaller 

than 5%. For hyper halogens [Ge(BH4)3]− and [Sn(BH4)3]−, the relative difference between 

the ions in the crystals and the isolated cluster is within 7% in X-X distances and about 18% 

in M-X-X angles.  
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TABLE S4. Experimental and simulated parameters of the studied super-alkalis and super-halogens as isolated 
clusters and in the studied hybrid perovskites under ambient conditions. ‘Bh’ stands for [BH4] and the B-H bond 
length is always between 1.2 and 1.3 Å. CsGeCl3, CsGeBr3 and CsGeI3 show the rhombohedral phase (R3m) at 
the room temperature. Their lattice parameters are 5.43, 5.64 and 5.98 Å, respectively. RbGeBr3, on the other 
hand, shows an orthorhombic phase at room temperature (Pn21

Super Ion 

a). For the super-alkalis, the data include the C-N 
distance, the C-H distance, the N-H distance, the N-C-H angle and the C-N-H angle. For the super-halogens, the 
data include the metal-halogen (M-X) distance, the nearest halogen-halogen (X-X) distance, the halogen-metal-
halogen (X-M-X) angle, the angle of metal-halogen-halogen (M-X-X) with the neighboring halogens and the long 
metal-halogen (M---X) bond(s) that are grouped out of the (square) pyramids. For comparison, data involve the 
same super-halogens are put in the same color. 

C-N 
(Å) 

C-H 
(Å) 

N-H 
(Å) 

N-C-H 
(º) 

C-N-H 
(º) 

M-X 
(Å) 

X-X 
(Å) 

X-M-X 
(º) 

M-X-X 
(º) 

M---X 
(Å) 

MA 1.52 + 1.09 1.03 108.26 111.50 -  - - - 

[GeCl3] - − - - - - 2.36 3.60~ 
3.61 

99.30~ 
99.40 

40.24~ 
40.38 - 

MAGeCl3 1.50 a 1.07 1.02 107.16 113.07 2.32~ 
2.34 

3.42~ 
3.43 

94.23~ 
95.57 

42.22~ 
43.17 

3.28~ 
3.29 

CsGeCl3 - c - - - - 2.35 3.44 94.16 42.92 3.09 

[Ge(Bh)3] -  − - - - - 2.55 4.18~ 
4.19 

110.51~ 
110.65 

34.67~ 
34.73 - 

MAGe(Bh) 1.49 3 1.09 1.04 108.94 112.16 2.53 3.85 98.85~ 
98.96 

40.51~ 
40.58 3.40 

[GeBr3] - − - - - - 2.53 3.90 100.62~ 
100.65 

39.67~ 
39.68 - 

MAGeBr 1.49 3 1.09 1.04 108.69 112.69 2.50~ 
2.59 

3.76~ 
3.81 

93.40~ 
97.09 

40.69~ 
43.43 

3.28~ 
3.58 

RbGeBr3 - c - - - - 2.52~ 
2.54 

3.72~ 
3.76 

94.59~ 
96.35 

41.78~ 
42.90 

3.21~ 
3.26 

CsGeBr3 - c - - - - 2.53 3.74 95.16 42.42 3.12 

[GeI3] - − - - - - 2.77 4.32 102.13~ 
102.33 

38.83~ 
38.93 - 

MAGeI 1.49 3 1.09 1.04 108.74 112.98 2.74~ 
2.85 

4.11~ 
4.23 

93.08~ 
99.12 

39.83~ 
43.85 

3.25~ 
3.47 

CsGeI3 - c - - - - 2.74 3.87 96.77 41.63 3.26 

[SnCl3] - − - - - - 2.54 3.85~ 
3.86 

98.60~ 
98.82 

40.58~4
0.70 - 

MASnCl3 1.49 b - - - - 2.60~ 
2.69 

3.61~ 
4.07 

86.16~ 
100.12 

39.34~ 
48.01 

3.06~ 
3.18 

CsSnCl3 (RT) - c - - - - 2.49~ 
2.55 

3.45~ 
3.64 

86.95~ 
92.26 

43.24~ 
46.19 

3.21~ 
3.77 

[Sn(Bh)3] - − - - - - 2.67 4.34 108.78~ 
108.90 

35.55~ 
35.62 - 

MASn(Bh) 1.49 3 1.09 1.04 108.86 112.36 2.78 4.06 93.82~ 
93.88 

43.05~ 
43.09 3.32 

[SnBr3] - − - - - - 2.70 4.12~ 
4.13 

99.59~ 
99.64 

40.18~ 
40.21 - 

MASnBr3 1.49  c 1.09 1.04 108.71 113.05 2.83~ 
2.96 

4.00~ 
4.34 

86.57~ 
98.39 

40.16~ 
47.04 3.04 

[SnI3] - − - - - - 2.94 4.54~ 
4.55 

101.09~ 
101.18 

39.40~ 
39.47 - 

MASnI3 1.49 c 1.09 1.04 108.83 112.83 3.01~ 
3.10 

4.31~ 
4.50 

88.87~ 
95.03 

41.70~ 
45.57 3.17 
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FA 1.31 + 1.09 1.01 117.36 119.97~ 
123.19 -  - - - 

FAGeCl 1.31 3 1.09 1.02 117.47 119.11~ 
122.35 

2.35~ 
2.38 

3.44~ 
3.50 

92.51~ 
95.66 

41.89~ 
43.88 

3.47~ 
3.52 

FAGe(Bh) 1.31 3 1.09 1.02 117.67 119.08~ 
122.34 

2.49~ 
2.56 

3.76~ 
3.91 

94.75~ 
101.54 

38.62~ 
42.73 

3.48~ 
3.57 

FAGeBr 1.31 3 1.09 1.02 117.82 119.23~ 
122.07 

2.52~ 
2.56 

3.72~ 
3.83 

93.15~ 
97.99 

40.66~ 
43.46 

3.36~ 
3.45 

FAGeI 1.31 3 1.09 1.02 118.28 119.13~ 
121.91 

2.76~ 
2.81 

4.08~ 
4.31 

94.13~ 
101.41 

38.96~ 
43.39 

3.28~ 
3.35 

FASnCl 1.31 3 1.09 1.02 117.59 118.00~ 
123.99 

2.56~ 
2.71 

3.66~ 
3.87 

87.09~ 
94.83 

41.25~ 
47.83 

3.13~ 
3.31 

FASn(Bh) 1.31 3 1.09 1.02 117.79 119.35~ 
121.93 

2.74~ 
2.79 

3.93~ 
4.07 

89.38~ 
94.69 

42.14~ 
45.36 

3.26~ 
3.34 

FASnBr 1.31 3 1.09 1.02 117.87 119.00~ 
122.16 

2.78~ 
3.10 

3.99~ 
4.43 

86.80~ 
96.35 

41.14~ 
49.45 3.22 

FASnI3 1.31 c 1.09 1.02 118.06 119.17~ 
122.16 

3.09~ 
3.13 

4.21~ 
4.59 

85.09~ 
95.25 

42.06~ 
47.50 3.14 

aAvailable experimental data from 2 to 475 K with different crystal structures [3]. 
bAvailable experimental data of the monoclinic (Space group = Pc) at 318 K [4]. 
cAvailable experimental data [5-10]. 

 

 

Besides evaluating the structures of the super-halogens in various materials under ambient 

conditions, it is noted that all the studied hybrid perovskites tend to adopt a cubic phase at 

high temperatures (as shown in the last row of Table S3). The super halogens in such high 

symmetric phase appear to be regular octahedral. The halogen atom X on the vertices of an 

octahedron is shared by the two neighboring super-halogens, i.e. each X provides ‘half’ 

electron to bond with the center metal ion to make [(M+1/2)2(X−1/2)6]− = [MX3]−. Suppose, in a 

pyramidal configuration, the M-X bond is a normal two-center two-electron bond with bond 

order nb = 1, then a symmetric X-M-X bond in the octahedron can be described as a three-

center four-electron bond with two electrons participating in bonding and the other two 

ascribed to the neighboring octahedra occupying the non-bonding orbital. The bond order in 

such a case is regarded as nb = 0.5. In other words, the total number of bonding electrons on a 

symmetric X-M-X bond remains unchanged upon deformation to a single M-X bond with the 

trans M…X bond length approaching infinity. Indeed, as found in our cluster calculations of 

the super-halogen [SnI3]−  in both its symmetric and asymmetric forms, the stretching 

frequency of a M-X bond in the pyramid is ωX-M = 145 cm−1 and the frequency of M vibrating 

in a symmetric X-M-X bond is ωX-M-X = 101 cm−1, which makes the ratio between the two 

corresponding force constants kM-X/kX-M-X = (ωX-M/ωX-M-X)2 ≈ 2. Such a ratio suggests the 
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bond strength of a symmetric X-M-X bond being exactly half of the M-X bond in a pyramid, 

as the bonding electron of the latter is equally shared between two symmetric bonds in the 

former. 

 

Based on the assumption that the electron density of the ground state decreases exponentially 

with the distance from the nucleus, the bond order of M-X bond in X…M-X can be expressed 

as (the Pauling’s equation [11]) 

M-X 0
b 0 exp d dn n

a
− = − 

 
,     (S47) 

where dM-X is the bond length of M-X. n0 M-X 0d d=is the bond order when . Because of the 

conservation of the total bond order (as discussed above), the bond order of the trans X…M 

in X…M-X should be 

M...X 0
b 01 exptrans

d dn n n
a

− = − = − 
 

     (S48) 

with dM…X 

M-X 0 b, 1d d n= =

being the bond length of the trans bond X…M. a is the characteristic length of a 

specific M-X bond, measuring how fast the bond order is reduced because of bond length 

increase. A bigger a corresponds to slower change of the bond order with the bond length, and 

vice versa.  

 

From Eq. (S47)-(S48), it can be seen that, when the super-halogen adopts a completely 

asymmetric form (like in a pyramidal geometry), we have 

     (S49) 

and the trans X…M bond length 

M...Xd → ∞ .     (S50) 

For a large bond length, one would imagine that the bond order should be much less sensitive 

to the change of bond length than for a short bond length. For example, when the trans bond 

length M...Xd → ∞ , the bond order will be essentially zero and will hardly change with 

increasing M...Xd . On the other hand, the bond order of M-X will decrease fast with small 

M...X 0d d− . Indeed, the exponential function in Eq. (S47)-(S48) describes such behavior nicely, 

as the derivative of the exponential function also decreases exponentially with respect to the 

bond length. When the super- halogen adopts a symmetric form with 

X...M M-Xd d= ,    (S51) 
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as the case in the regular-octahedron geometry, we have 

b
1
2transn n= = .     (S52) 

 

Combining Eq. (S47) and (S48), we can obtain the relation between the bond length of M-X 

and the corresponding bond length of the trans X…M, 

0 2
1 ln exp expd dd a

a a
    = − − − −      

.     (S53) 

Since the values that X...Md  and X-Md  can take are totally symmetric, we have put one of them 

as d1 and the other as d2 in Eq. (S53). Now, we can use Eq. (S53) to fit to the bond length 

data extracted from the experimental or simulated crystal structures for different phases of all 

the studied hybrid perovskites. For the bond involving super halogen [BH4]−, we take the 

bond length between the metal and the boron atom.  
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Fig.S7 Least-square fitting to the (trans) bond length (X…M) with M-X data taken from experiments 
or simulations by using Eq. (S53). The dashed lines in each case are the asymptotical lines at which 
the bond length is d0 and the trans bond length is infinity. The red lines in each case mark the bond 
length of an isolated [MX3]−  pyramid from a cluster calculation.  
 

 

For each material, we can obtain the characteristic length a and the bond length d0 that M-X 

should have in an ‘ideal asymmetrical’ pyramid in the crystal, as listed in Table S5. The 

fittings are shown in Figure S7. As expected, the M-X bond length asymptotically approaches 

d0 where its trans bond length X…M goes to infinity. We drew the bond length found for the 

isolated pyramid in a cluster calculation as the red line in each case. It turns out that this 

cluster bond length, dc

cd

, marks the boundary of the (trans) bond length (X…M) M-X that are 

found in a crystal (as the intersection points between the bond length curve and the two red 

lines in each figure). Given the trans bond length of calculated from Eq. (S53) as trans
cd , the 

following relation approximately holds 
trans trans

c 1 c c 2 c,d d d d d d≤ ≤ ≥ ≥ .    (S54) 

This shows that there is very little difference between the chemistry of bonding in an isolated 

super-halogen and that in the bulk crystal. In the low-temperature low-symmetry phases, such 

as triclinic, monoclinic, orthorhombic and rhombohedral phases generally observed in the 

hybrid perovskites, the super ions [MX3]− adopt the asymmetrical form of a pyramid and have 
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a M-X bond length around cd . In the high-temperature high-symmetry phases, such as 

tetragonal and cubic phases often observed in the hybrid perovskites, part of the bonding 

electrons in the M-X bond ‘moves’ to the other side of M to form a trans bond X…M. The 

reduction of the bond order in M-X will increase the bond length, while the increase of the 

bond order in X…M will decrease the trans bond length, until a symmetric (trans) bond X-M-

X is formed corresponding to half bond order in M-X. The super-ions [MX3]−

cd

 in such a case 

adopt a form of square pyramid or octahedron with high symmetry.  

 

Given the symmetric nature for the change of (trans) bond length (X…M) M-X and a 

relatively large parameter a, the characteristic curves in Figure S7 can be approximated by an 

‘isosceles right triangle’ in the left panel of Figure S8. According to simple trigonometry, it is 

found that, within the range bounded by the red lines (corresponding to  and its trans c
td ), 

the sum between any bond length ( 1d ) and its trans bond length ( 2d ) will be a constant 

1 2 1/ 22d d d+ = ,     (S55) 

where 1/ 2d  is the bond length when X-M-X in its symmetric form with the bond order 

b 0.5n = . This is a good approximation. For example, with the smallest a among the series, 

[SnBr3]−
c 2.7d = has  Å and the corresponding trans bond length c 3.4td =  Å, the sum of the 

two 6.1 Å agrees well with 1/ 22 5.9d =  Å. [GeCl3]−

c c 2.36 3.36 5.72td d+ = + =

 has the second smallest a, its sum 

 Å agrees well with its 1/ 22 5.42d =  Å. Thus, the super-halogen in 

each hybrid perovskite can be represented by a specific characteristic triangle (as in Figure 

S8) -- it adopts a polarized (asymmetrical) pyramidal form in low-symmetry phases and 

changes to a symmetrical form of octahedron in high-symmetry phases. In fact, such behavior 

is just like a regular ion, where in the cubic phase, the ion on the high-symmetry site must 

assume a spherical shape. However, ions on the low-symmetry site may adopt a polarized 

(asymmetrical) shape, like found in the recent study of chalcogen ions in pyrite-type crystals, 

where an ellipsoidal shape is proposed to describe each ion [12].  

 

https://en.wikipedia.org/wiki/Ellipsoid�
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Fig.S8 Left panel: schematic plot of a characteristic triangle of a super-halogen in the crystal. Right 
panel: the characteristic curves of bond length of the studied super-halogens in the crystals. The 
intersection between each curve and the diagonal line indicate the bond length value at 0.5 bond order 
in that super-halogen.  
 

 

The characteristic curves of the bond lengths of all the super-halogens in the crystals are given 

in the right panel of Figure S8. The diagonal line intersects each curve at 1/ 2d  ( b 0.5n = ). In 

the Ge series, 1/ 2d  is increasing in the order Ge-Cl, Ge-Br, Ge-(BH4

1/ 2d

) and Ge-I due to the 

reduced bond polarizability. The same trend goes for the Sn series. In the figure, larger 

curvature and smaller  implies that the bond order changes fast (small a) with the bond 

length and the corresponding super-halogen is more likely to assume a polarized (asymmetric) 

form of pyramid in the crystal.  

 

To sum up the previous discussions, the geometries of the same super-alkali [MA/FA]+ or 

super-halogen [MX3]− changes little throughout the studied crystals under ambient condition. 

For different (temperature) phases of a material, the super halogen [MX3]−

c c
td d−

 may adopt a 

polarized (asymmetric) pyramidal form in the low-symmetry phases and an octahedral 

symmetric form in the cubic phase. However, its geometrical dimension is bounded by the 

corresponding characteristic triangle (Figure S8). The two right-angle sides of such a triangle 

are equal to the difference between the trans bond length and the bond length of M-X of the 

isolated cluster ( ). The only physical assumption used to define the characteristic 

triangle is that the electronic density of an atom decreases exponentially with the distance 

from the nucleus.  

 



  

44 
 

Now, we can start defining the ionic radii for super-alkalis and super-halogens. The intuitive 

definition of a radius r for an ion implies the ion has a symmetric form – a sphere for a regular 

ion and a regular octahedron for a super-halogen which can be put inside a sphere with its 

vertices touching the spherical surface. Moreover, in order to use the interionic distance data 

to calculate the ionic radii, it is actually much easier to define the ionic radius for its 

symmetric form, because, for the corresponding cubic phase of the crystal, one can directly 

calculate the interionic distance between the cation and the anion using 

a h c
3

2
R r r L= + = .     (S56) 

ar  and hr  are the defined ionic radii of the alkali and the halogen, respectively. cL  is the side 

length of the cubic cell.  

 

Let us first start with a simple soft-sphere model by allowing the two neighboring super-

halogen spheres gently overlap with each other. Such assumption is reasonable given the 

[MX3]− super-halogen adopts a regular octahedron shape in the cubic phase and shares the 

electrons of the halogen on the vertex with its neighbor. To obtain a set of radii that are 

comparable to Shannon’s ionic radii of the alkalis and halogens, we calculate the radii of 

super-ions based on the Shannon [13] radius of Cs+. We found experimental interionic 

distances for the series CsMX3 (M = Ge, Sn; X = Cl, Br, I). The crystal that has the smallest 

super-halogen [MX3]− is most likely to satisfy the condition that the cation and the anion 

touch. We chose Cs+ over Rb+ due to the same reason (to make the cation-anion ratio as large 

as possible). CsGeCl3

 

 is, therefore, our starting point. The radii of the studied super-alkalis 

and super-halogens can be calculated hereafter. We used as many experimental data as we 

could in the process. Table S5 shows the computed ionic radii for those with coordination 

number (CN) equals 6 and 8. For CN = 8, the cation will be bigger, because the repulsion 

between neighboring anions will be bigger with larger coordination number. We then used the 

obtained ionic radii to calculate the interionic distances for the hybrid perovskites that have 

not been used to compute these radii. The distances agree well with the simulated ones with 

an average deviation of 0.05 Å, as shown in Table S6.  
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Table S5 Fitted values of d0 and a of Eq. (S53) for different super-halogens. d1/2 is the calculated bond length at the 
bond order nb =0.5. Lc is the side length of the (pseudo) cubic cell. ‘Bh’ is a short form for [BH4]. For the cases of 
coordination number (CN) of 6 and 8 (shown in square brackets in the last column), the ionic radii were calculated 
directly be assuming that the [GeCl3] ‘sphere’ is touching the Cs+ sphere in CsGeCl3 crystal. Values in red are the ones 
adopted to minimize the overlap between the anions. The effective radii of Cs+ and Rb+

Ion 

 are the Shannon’s radii [13]. 

 
nb=1 

d0

a 
(Å) 

 (Å) 

 
nb=0.5 
d1/2

2d

(Å) 

1/2 L(Å) c Ionic radius(Å) (Å) Overlap 
(Å) 

Cs - + - - - - 1.81 (CN=6) 1.88 (CN=8) - 

Rb - + - - - - 1.66 
(CN=6) 

1.75 
(CN=8) - 

[GeCl3] 2.18 − 0.76 2.71 5.42 5.47(CsGeCl3 2.93 ) 2.86 0.19[6] 
0.12[8] 

MA - + - - - 5.658(MAGeCl3 1.97 ) 2.04 - 

[GeBr3] 2.29 − 0.79 2.84 5.68 

5.659(RbGeBr3) 
5.68(CsGeBr3) 
5.93(MAGeBr3

3.24(Rb

  
tetragonal) 

+) 
3.11(Cs+) 

3.16(MA+

3.15(Rb

) 

+) 
3.04(Cs+) 

3.09(MA+

0.19[6] 
0.12[8] ) 

[GeI3] 1.56 − 2.16 3.05 6.10 
6.04(CsGeI3) 
6.11(MAGeI3

3.42(Cs 
tetragonal) 

+) 
3.32(MA+

3.35(Cs
) 

+) 
3.25(MA+

0.26[6] 
0.19[8] ) 

[SnCl3] 2.17 − 0.98 2.85 5.68 5.604(CsSnCl3) 
5.760(MASnCl3

3.04(Cs
) 

+) 
3.02(MA+

2.97(Cs
) 

+) 
2.95(MA+

0.14[6] 
0.07[8] ) 

[SnBr3] 2.59 − 0.52 2.95 5.90 5.808(CsSnBr3) 
5.901(MASnBr3

3.22(Cs
) 

+) 
3.14(MA+

3.15(Cs
) 

+) 
3.07(MA+

0.19[6] 
0.12[8] ) 

[SnI3] 1.37 − 2.54 3.13 6.26 6.219(CsSnI3) 
6.243(MASnI3

3.58(Cs
) 

+) 
3.44(MA+

3.51(Cs
) 

+) 
3.37(MA+

0.32[6] 
0.25[8] ) 

FA - + - - - 6.329(FASnI3 2.04 ) 2.11 - 

[Ge(Bh)3] 1.74 − 1.74 2.94 5.88 5.876(MAGeBh3 3.12  
trigonal) 3.05 0.18[6] 

0.11[8] 

[Sn(Bh)3] 1.69 − 1.92 3.02 6.04 6.054(MASnBh3 3.27 ) 3.20 0.24[6] 
0.17[8] 
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Table S6 Calculated interionic distances using the ionic radii given in Table S5, compared to the 
simulated ones. 

Material Simulated interionic 
distance (Å) 

Additive interionic 
distance (Å) Residual (Å) 

FAGeCl3 5.05  (trigonal) 4.97 0.08 
FAGeBr3 5.14  (tetragonal) 5.20 −0.06 
FAGeI3 5.28  (tetragonal) 5.36 −0.08 

FAGe(BH4)3 5.20  (trigonal) 5.16 0.04 
FASnCl 5.05 3 
(trigonal) 5.06 −0.01 

FASnBr3 5.17  (tetragonal) 5.18 −0.01 
FASn(BH4)3 5.24  (trigonal) 5.31 −0.07 
 

 

 

According to Eq. (S56), we can also use least-square fitting to obtain a set of ionic radii that 

best fit the experimental and simulated interionic distances, as shown in Table S7. To make 

the radii consistent with Shannon radii, we set Cs+ and Rb+ radii fixed at Shannon’s values 

during the fitting. To reduce the number of fitting variables, we also fix the radius of [SnBr3]−

( )A B X X2r t r r r= ⋅ + −

 

obtained from the calculated electric dielectric constant using Eq. (S45)-(S47). 

 

We test the results by using the Goldschmidt tolerance factor t for perovskites material ABX 

,    (S57)  

where, in our case, Ar , Br  and Xr  are the ionic radii of the super-alkali, the metal and the 

halogen, respectively. t is found to be between 0.9 and 1.0 for cubic perovskite structures. By 

using the Shannon’s ionic radii of Ge2+ (0.87 Å), Sn2+ (1.03 Å), Cl− (1.67 Å) and I− (2.06 Å ), 

we estimate the radius range of the cation (MA+ and FA+

Table S7 Fitted ionic radii of super-alkalis and super-halogens using Eq. (S56). The mean 
deviation of the calculated interionic distances compared to the the experimental (or simulated) 
values is 0.06Å. The upper figure in each case is the calculated one. 

) to be between 1.56 and 2.31 Å. Our 

values in Table S7 fall well within this range. 

 

Ion Cs MA+ FA+ Rb+ + 

 Ionic radius 
(Å) 1.88 2.14 a 2.21 1.75a 

[GeCl3] 2.84 − 4.72 
4.74 

4.98 
4.90 

5.05 
5.05 - 

[GeBr3] 3.00 − 4.88 
4.92 

5.14 
5.13 

5.21 
5.14 

4.75 
4.90 

[GeI3] 3.14 − 5.02 
5.23 

5.28 
5.29 

5.35 
5.28 - 

[SnCl3] 2.85 − 4.73 4.99 5.05 - 
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4.85 4.99 5.05 

[SnBr3] 2.94− 
4.82 
5.03 

b 5.08 
5.11 

5.14 
5.17 - 

[SnI3] 3.27 − 
5.15 
5.39 

5.41 
5.41 

5.48 
5.48 - 

[Ge(BH4)3] 2.95 − - 5.09 
5.09 

5.16 
5.20 - 

[Sn(BH4)3] 3.01 − - 5.15 
5.24 

5.22 
5.22 - 

aShannon’s data of coordination number 8 [13]. 
bComputed by using Eq.(S43)-(S46) with the static dielectric constant of MASnBr3, ε0 = 5.67, 
obtained from our HSE06 calculation. 
 

 

Pauling proposed a method to define ionic radii for alkali halide crystals based on the lattice 

energy [14] 
2 2

n

z e A BU
r r

= − + ,     (S58) 

where ze is the charge of an ion and r the interionic distance. The first term on the right hand 

side is the Coulomb attraction with A being the Madelung constant of the crystal, while the 

second term is the repulsive potential with  
1 1

1
0

1.25 0.752 2( )
1 1

n n
n

n n

c cB r r B c
r r

ρ
ρ ρ

− −
− ++ −−

+ − +−
++ −−

    ⋅ ⋅
= + + +    + +     

.     (S59) 

r+ and r− are the ionic radii of the cation and anion, respectively. c+− is the cation-anion 

coordination number which is 6 in a NaCl-alike crystal and 8 in a CsCl-alike crystal. c++ and 

c−− are the cation-cation and the anion-anion coordination numbers, respectively. In a NaCl 

crystal c++  = c−−  = 12, while c++  = c−−  = 6 in a CsCl crystal. r++ and r−− are the nearest 

neighbor cation-cation distance and anion-anion distance, respectively. ρ=r+/r− is the radius 

ratio between the cation and anion. Eq. (S59) shows that the repulsive potential is inversely 

proportional to the high power of the interionic distance, where the power n is usually taken to 

be 9 for the alkali halides [14].  

 

If we follow Pauling’s strategy, B0

' 0U =

 in Eq. (S59) is chosen to make the equilibrium interionic 

radius (by putting ) 

( ) ( )1
n

nR r r F ρ−
+ −= + ⋅      (S60) 

with the so-called correction factor F(ρ) = 1 when ρ = 0.75 for NaCl crystals and ρ = 1.0 for 

CsCl crystals. According to Eq. (S58) and (S59), for a general ρ of a NaCl-alike crystal 
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( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

1
11 1.25 2 0.75 21.75

1 1.75 1.25 2 0.75 0.75 2

n n nnn

n n nn
F

ρ ρ
ρ

ρ

− + + ⋅ + ⋅ = ⋅ 
+ + ⋅ ⋅ + ⋅ 

   (S61) 

and for a CsCl-alike crystal 

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

1
11 1.25 0.375 3 0.75 0.375 31.75

1 1.75 1.25 0.375 3 0.75 0.75 0.375 3

n n nnn

n n nn
F

ρ ρ
ρ

ρ

− + + ⋅ ⋅ + ⋅ ⋅ = ⋅ 
+ + ⋅ ⋅ ⋅ + ⋅ ⋅ 

.  (S62) 

The correction factors in Eq. (S61) and (S62) have the advantage of taking into account both 

the anion-anion and the cation-cation repulsion (so-called double repulsion) at the critical 

radius ratio (ρ = 0.414 for NaCl crystals and ρ = 0.732 for CsCl crystals) when the anion and 

cation as well as the anion and anion are just touching each other in a hard-sphere model. 

Such repulsion will effectively make the equilibrium bond length longer than the cation-anion 

ionic radii added together. This is quite different from our soft-sphere model discussed before. 

 

Figure S9 shows the correction factor against the radius ratio as calculated from Eq. (S61) and 

(S62). Clearly, both lines (solid red and black) deviate upwards significantly from 1.0 at the 

critical ratios (0.414 and 0.732). For small radius ratios, the n → ∞  line of the 8 coordination 

(dotted black) goes above the n = 9 line (solid black), as opposed to the case of 6-coordination 

lines. This reflects that the large coordination number produces small anion-anion distance 

and the repulsion increases much faster for larger n. With certain correction factor, the 6-

coordination line corresponds to smaller ratio than the 8-coordination line, suggesting that the 

cation radius tends to increase with the coordination number due to larger repulsion between 

the anions.  
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Fig. S9 Calculated correction factor against the radius ratio for NaCl-like (in red) and CsCl-like (in 
black) crystals using Eq.(S61) and (S62), respectively. The dotted line corresponds to the correction 
factor when the power n tends to infinity in each case, i.e. when the repulsion is infinitely small for 
large interionic distance and is infinitely large for small interionic distance. 
 

 

Pauling in his work [14] has defined the ionic radii for all the alkalis (= Li+, Na+, K+, Rb+, 

Cs+) and halogens (= F−, Cl−, Br−, I−) by using Eq. (S61) to fit to the experimental interionic 

distances of the alkali halide crystals. To define a set of ionic radii for the super-alkalis and 

super-halogens that are consistent and comparable with Pauling’s data, we first note that 

abundant experimental data are available for [Cs/Rb]+[super halogen]− salts, as indicated in 

Table S5. Thus, by using Pauling’s ionic radii of Cs+ and Rb+ and by using Eq. (S61)-(S62), 

we can define a set of ionic radii for the super-alkalis and super-halogens that are able to best 

fit the available and simulated interionic distances. The fitted ionic radii are shown for both 

NaCl-like crystals (CN = 6) and CsCl-like crystals (CN = 8) in Table S8 and S9, respectively. 

Together shown are the calculated interionic distances compared to the measured or simulated 

ones. Note that the interionic distances deviate from the sum of the corresponding ionic radii 

due to the repulsion between like and unlike ions as contained in the correction factor of F(ρ). 

The experimental (or simulated) interionic distances fit very well by these ionic radii. with the 

radii obtained for the 8 coordination number showing a slightly better overall fitting than the 

6-coordinated ones.  
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Table S8 Fitted ionic radii for coordination number 6. The mean deviation of the calculated 
interionic distances from the experimental (or simulated) ones is 0.045Å. The upper figure in 
each case is the calculated one. 

Ion Cs MA+ FA+ Rb+ + 

 Ionic radius 
(Å) 1.434 1.632 a 1.686 1.294a 

[GeCl3] 2.492 − 4.737 
4.737 

4.957 
4.900 

5.020 
5.050 - 

[GeBr3] 2.610 − 4.919 
4.919 

5.134 
5.135 

5.196 
5.136 

4.780 
4.901 

[GeI3] 2.714 − 5.081 
5.231 

5.291 
5.291 

5.351 
5.276 - 

[SnCl3] 2.513 − 4.769 
4.853 

4.988 
4.988 

5.051 
5.051 - 

[SnBr3] 2.594 − 4.895 
5.030 

5.120 
5.110 

5.172 
5.166 - 

[SnI3] 2.799 − 5.216 
5.386 

5.422 
5.406 

5.481 
5.481 - 

[Ge(BH4)3] 2.580 − - 5.089 
5.089 

5.151 
5.196 - 

[Sn(BH4)3] 2.624 − - 5.155 
5.243 

5.216 
5.216 - 

aPauling’s data [14]. 
 

 

Table S9 Fitted ionic radii for coordination number 8. The mean deviation of the calculated 
interionic distances from the experimental (or simulated) ones is 0.038Å. The upper figure in 
each case is the calculated one. 

Ion Cs MA+ FA+ Rb+ + 

 Ionic radius 
(Å) 1.434 1.617 a 1.674 1.294a 

[GeCl3] 2.425 − 4.795 
4.737 

4.900 
4.900 

4.965 
5.050 - 

[GeBr3] 2.542 − 4.953 
4.919 

5.055 
5.135 

5.118 
5.136 

5.117 
4.901 

[GeI3] 2.648 − 5.195 
5.231 

5.291 
5.291 

5.351 
5.276 - 

[SnCl3] 2.476 − 4.884 
4.853 

4.987 
4.988 

5.051 
5.051 - 

[SnBr3] 2.548 − 5.010 
5.030 

5.110 
5.110 

5.172 
5.166 - 

[SnI3] 2.738 − 5.329 
5.386 

5.423 
5.406 

5.481 
5.481 - 

[Ge(BH4)3] 2.535 − - 5.124 
5.089 

5.186 
5.196 - 

[Sn(BH4)3] 2.578 − - 5.214 
5.243 

5.275 
5.216 - 

aPauling’s data [14]. 
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All the ionic radii defined above should be considered as the ionic radii of the super-halogens 

when they adopt the symmetric form, because all the interionic distances we used in the 

fittings are either from the cubic phase or from a high-symmetry cell calculated as a cubic one. 

Under ambient conditions, the hybrid perovskites usually show a less-symmetric phase and 

the super-halogens adopt a polarized form of pyramid or square pyramid. Based on our 

discussion about the characteristic triangle of the super-halogen [MX3]−, its symmetric form 

(regular octahedron) should have a larger radius than its polarized form (pyramid), given the 

former has bigger geometrical dimension due to the longer M-X bond distances and more 

distributed electrons. Indeed, if we compare the volume per molecule between the low 

symmetry phase and the high symmetry phase of the same material, the volume decreases 

with lower symmetry. This is commonly observed in the displacive phase transition of 

perovskites, where a high-symmetry phase with larger volume is favored over a low-

symmetry distorted phase at higher temperatures due to its larger entropy term in the Gibbs 

free energy. It should be noted that, when we define the effective ionic radii, we ignore the 

thermal expansion effect of the material. The ordinary linear thermal expansion coefficient is 

in the order of 1×10−6

1/ 2d

/K, which means for a crystal with cell length as large as 10 Å, 

increasing 1000 K in temperature will only affect the second decimal place of the cell length 

or the ionic radii. For the temperature in our consideration (several hundred K), the effect of 

thermal expansion would be on the third decimal place of the ionic radii.  

 

In order to estimate the ionic radii for the ‘pyramidal’ super-halogens, we first note that the 

bond length of the symmetric form (regular octahedron)  is correlated with its defined 

radius. Figure S10 shows the calculated bond lengths of the super-halogens in their symmetric 

form (see the data of nb = 0.5 in Table S5) against the defined ionic radii in Table S7 and S8. 

Approximately, the ionic radius is linearly proportional to the bond length. Linear fittings 

reveal that the ratios are 0.8 and 1.3 for the Shannon’s type radii (Table S7) and Pauling’s 

type radii (Table S9), respectively.  
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Fig. S10 The approximately linear relation between the bond length d1/2 (nb = 0.5) and the defined 
Shannon-type (red square) and Pauling-type (black circle) ionic radii of the super-halogens in the 
symmetric form. The solid lines represent linear fit. The slopes of the black and red lines are 1.3 and 
0.8, respectively. The intercepts are −0.4 and 0.5, respectively. 
 

 

Since d1/2 is correlated with the cluster bond length dc of the pyramidal form of the super-

halogens according to the characteristic triangle, it is only natural to define the ionic radii for 

the pyramidal super-halogens by assuming the same linear relationship between dc

 
Table S11 Calculated ionic radii of super halogens in their pyramidal form by using the 
cluster bond length d

 and the 

radii. Table S11 shows the calculated ionic radii of the pyramidal super-halogens using this 

method. As expected, the calculated ionic radii of the pyramidal super-halogens are smaller 

than the ones with the symmetric configurations.  

 

c

Super halogen 

. The Shannon-type radii correspond to the slope of 0.8 and the 
intercept of 0.5 Å. The Pauling-type radii correspond to the slope of 1.3 and the intercept of 
−0.4 Å. For comparison, the Shannon-type or Pauling-type radius of the symmetric 
super- halogen is the lower figure in each case.  

dc

Ionic radii of pyramid (Å) 
(Å) Slope = 0.8 

Intercept = 0.5 Å 
Slope = 1.3 

Intercept = −0.4Å 

[GeCl3] 2.36 − 2.32 
(2.84) 

2.123 
(2.425) 

[GeBr3] 2.53 − 2.54 
(3.00) 

2.254 
(2.542) 

[GeI3] 2.77 − 2.84 
(3.14) 

2.438 
(2.648) 

[SnCl3] 2.54 − 2.55 
(2.85) 

2.261 
(2.476) 

[SnBr3] 2.7 − 2.75 2.385 
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(2.94) (2.548) 

[SnI3] 2.94 − 3.05 
(3.27) 

2.569 
(2.738) 

[Ge(BH4)3] 2.55 − 2.56 
(2.95) 

2.269 
(2.535) 

[Sn(BH4)3] 2.67 − 2.71 
(3.01) 

2.361 
(2.578) 

 

 

Now, with the effective ionic radii of the super-alkalis and super-halogens properly defined, 

we can compute the electronic band gaps of the alkali halides and the hybrid perovskites in 

our physical model and compare the results with available experiments. Table S12 lists the 

model calculated band gaps of the alkali halides and the available experimental values. We 

emphasize that one must use the radii of cation and anion computed within the same method. 

For example, one should not use Shannon’s radius for the cation and Pauling’s radius for the 

anion in the same calculation, because these radii are defined self-consistently only within the 

same category. Also, only the data from the same type of radii (Shannon or Pauling) are 

comparable to each other. It is inappropriate to compare, for example, the band gap calculated 

using Shannon’s radii to a band gap using Pauling’s radii. Table S13 lists the computed band 

gaps of the studied hybrid perovskites with the experimental values or the values from PBE, 

HSE06 and GW calculations, whichever is available.  

 

 

Table S12 Calculated band gaps (Eg) of the alkali halides using our physical model (see Eq. 
(S23), (S33) and (S36)). Experimental data (Exp.) [15] are given for comparison. Δχ is the 
ionicity of the bond defined in Eq. (S3). R+ and R− are the ionic radii. In each case, Shannon 
radius (S) is the upper number and Pauling radius (P) is the lower number. Lc is the cell length 
of the model calculated as twice the sum of R+ and R−. For Pauling’s radii, the correction 
factor in Eq. (S31) has been used in computing Lc. In the CsX (X = halogen) series, Cs+

Material 

 is 6-
coordinated in CsF and 8-coordinated in the others, corresponding to Shannon’s radii 1.81 Å 
and 1.88 Å, respectively. 

Δχ (eV) R+ R (Å) − L(Å) Ec g Exp. (eV)  (eV) 

LiF 18.74 0.90 (S) 
0.574 (P) 

1.19 (S) 
1.225 (P) 

4.18 (S) 
4.016 (P) 

10.9 (S) 
10.1(P) 13.6 

LiCl 12.73 0.90 (S) 
0.574 (P) 

1.67 (S) 
1.589 (P) 

5.14 (S) 
5.134 (P) 

6.7 (S) 
5.5 (P) 9.4 

LiBr 11.24 0.90 (S) 
0.574 (P) 

1.82 (S) 
1.702 (P) 

5.44 (S) 
5.494 (P) 

5.9 (S) 
4.6 (P) 7.6 

NaF 18.91 1.16 (S) 
0.873 (P) 

1.19 (S) 
1.225 (P) 

4.70 (S) 
4.614 (P) 

8.2 (S) 
8.2(P) 11.7 

NaCl 12.90 1.16 (S) 
0.873 (P) 

1.67 (S) 
1.589 (P) 

5.66 (S) 
5.630 (P) 

5.5 (S) 
5.2 (P) 8.5 

NaBr 11.41 1.16 (S) 
0.873 (P) 

1.82 (S) 
1.702 (P) 

5.96 (S) 
5.958 (P) 

5.0 (S) 
4.6 (P) 7.7 
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KF 19.89 1.52 (S) 
1.173 (P) 

1.19 (S) 
1.225 (P) 

5.42 (S) 
5.326 (P) 

5.6 (S) 
5.8 (P) 10.7 

KCl 13.88 1.52 (S) 
1.173 (P) 

1.67 (S) 
1.589 (P) 

6.38 (S) 
6.280 (P) 

4.1 (S) 
4.2 (P) 8.4 

KBr 12.39 1.52 (S) 
1.173 (P) 

1.82 (S) 
1.702 (P) 

6.68 (S) 
6.586 (P) 

3.7 (S) 
3.8 (P) 7.4 

KI 10.49 1.52 (S) 
1.173 (P) 

2.06 (S) 
1.867(P) 

7.16 (S) 
7.054 (P) 

3.3 (S) 
3.3 (P) 6.0 

RbF 20.21 1.66 (S) 
1.294 (P) 

1.19 (S) 
1.225 (P) 

5.70 (S) 
5.634 (P) 

5.0 (S) 
5.1 (P) 10.4 

RbCl 14.20 1.66 (S) 
1.294 (P) 

1.67 (S) 
1.589 (P) 

6.66 (S) 
6.554 (P) 

3.7 (S) 
3.8 (P) 8.2 

RbBr 12.71 1.66 (S) 
1.294 (P) 

1.82 (S) 
1.702 (P) 

6.96 (S) 
6.868 (P) 

3.4 (S) 
3.4 (P) 7.5 

RbI 10.81 1.66 (S) 
1.294 (P) 

2.06 (S) 
1.867(P) 

7.44 (S) 
7.326 (P) 

3.0 (S) 
3.0 (P) 6.2 

CsF 20.45 1.81 (S) 
1.434 (P) 

1.19 (S) 
1.225 (P) 

6.00 (S) 
6.010 (P) 

4.4 (S) 
4.3 (P) 10.9 

CsCl 14.44 1.88 (S) 
1.434 (P) 

1.67 (S) 
1.589 (P) 

7.10 (S) 
6.910 (P) 

3.1 (S) 
3.3 (P) 8.3 

CsBr 12.95 1.88 (S) 
1.434 (P) 

1.82 (S) 
1.702 (P) 

7.40 (S) 
7.208 (P) 

2.9 (S) 
3.1 (P) 7.3 

CsI 11.05 1.88 (S) 
1.434 (P) 

2.06 (S) 
1.867(P) 

7.88 (S) 
7.656 (P) 

2.6 (S) 
2.7 (P) 6.3 

 

 

Table S13 Calculated band gaps (Eg) of the studied hybrid perovskites using our physical model (see 
Eq. (S23), (S33) and (S36)). Experimental data (Exp.) or calculated ones from DFT (PBE, HSE and 
GW) are given for comparison. Δχ is the ionicity of the bond defined in Eq. (S3). R+ and R− are the 
ionic radii of the cation and anion, respectively. In each case, Shannon-type radius (S) is the upper 
figure and Pauling-type radius (P) the lower one. The radii for the case of 8 coordination number are 
used. The left figure is when the super-halogen in its symmetric form (regular octahedron in the cubic 
phase) and the right figure is when the super-halogen adopts its pyramidal form (in low-symmetry 
phases) with all three M-X bond lengths close to dc. Lc is the cell length in the model calculated as 
twice the sum of R+ and R−. For Pauling-type radii, the correction factor in Eq. (S31) has been used in 
computing Lc

Material 

.  

Δχ (eV) R+ R (Å) − L (Å) Ec g
Exp/DFT. 

(eV)  (eV) 

CsGeCl 8.88 3 
1.88(S) 

1.434(P) 
2.84/2.32(S) 
2.42/2.12(P) 

9.44/8.40(S) 
9.59/8.49(P) 

1.74~2.30(S) 
1.65~2.20(P) 3.67(Exp.)a 

CsGeBr 8.32 3 
1.88(S) 

1.434(P) 
3.00/2.54(S) 
2.54/2.25(P) 

9.76/8.84(S) 
9.91/8.91(P) 

1.62~2.06(S) 
1.54~1.98(P) 2.32(Exp.)a 

CsSnCl3 9.35 1.88(S) 
1.434(P) 

2.85/2.55(S) 
2.48/2.26(P) 

9.46/8.86(S) 
9.77/8.93(P) 

1.71~2.00(S) 
1.57~1.93(P) 4.5(Exp.)b 

CsSnBr 8.65 3 
1.88(S) 

1.434(P) 
2.94/2.75(S) 
2.55/2.38(P) 

9.64/9.26(S) 
10.02/9.34(P) 

1.66~1.82(S) 
1.49~1.76(P) 1.8(Exp.)b 

CsSnI 7.92 3 
1.88(S) 

1.434(P) 
3.27/3.05(S) 
2.74/2.57(P) 

10.30/9.86(S) 
10.66/9.97(P) 

1.44~1.59(S) 
1.30~1.53(P) 1.3(Exp.)b 

MASnCl 10.2 3 
2.14(S) 
1.62(P) 

2.85/2.55(S) 
2.48/2.26(P) 

9.98/9.38(S) 
9.97/9.31(P) 

1.49~1.72(S) 
1.48~1.74(P) 3.69(Exp.)c 

MASnBr 9.5 3 
2.14(S) 
1.62(P) 

2.94/2.75(S) 
2.55/2.38(P) 

10.16/9.78(S) 
10.22/9.70(P) 

1.44~1.58(S) 
1.41~1.59(P) 2.15(Exp.)d 

MASnI 8.77 3 2.14(S) 3.27/3.05(S) 10.82/10.38(S) 1.26~1.39(S) 1.3(Exp.)d 
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1.62(P) 2.74/2.57(P) 10.85/10.30(P) 1.24~1.40(P) 

MASn(BH4) 8.81 
3 

2.14(S) 
1.62(P) 

3.01/2.71(S) 
2.58/2.36(P) 

10.30/9.70(S) 
10.43/9.62(P) 

1.41~1.63(S) 
1.36~1.64(P) 

3.61(HSE) 
2.8(PBE) 

MAGeCl 9.73 3 
2.14(S) 
1.62(P) 

2.84/2.32(S) 
2.42/2.12(P) 

9.96/8.92(S) 
9.80/8.89(P) 

1.50~1.95(S) 
1.55~1.95(P) 3.72(GW)e 

MAGeBr 9.17 3 
2.14(S) 
1.62(P) 

3.00/2.54(S) 
2.54/2.25(P) 

10.28/9.36(S) 
10.11/9.29(P) 

1.41~1.76(S) 
1.45~1.78(P) 

3.69(HSE) 
2.87(PBE) 

MAGeI 8.53 3 
2.14(S) 
1.62(P) 

3.14/2.84(S) 
2.65/2.44(P) 

10.56/9.96(S) 
10.58/9.87(P) 

1.34~1.54(S) 
1.32~1.56(P) 

2.53(HSE) 
1.95(PBE) 

MAGe(BH4) 8.51 
3 

2.14(S) 
1.62(P) 

2.95/2.56(S) 
2.53/2.27(P) 

10.18/9.40(S) 
10.25/9.33(P) 

1.46~1.77(S) 
1.42~1.78(P) 

4.16(HSE) 
3.23(PBE) 

FASnCl 8.71 3 
2.21(S) 
1.67(P) 

2.85/2.55(S) 
2.48/2.26(P) 

10.12/9.52(S) 
10.10/9.42(P) 

1.48~1.71(S) 
1.47~1.74(P) 

2.72(HSE) 
2.02(PBE) 

FASnBr 8.01 3 
2.21(S) 
1.67(P) 

2.94/2.75(S) 
2.55/2.38(P) 

10.30/9.92(S) 
10.34/9.80(P) 

1.44~1.58(S) 
1.41~1.60(P) 

2.78(HSE) 
2.15(PBE) 

FASnI 7.28 3 
2.21(S) 
1.67(P) 

3.27/3.05(S) 
2.74/2.57(P) 

10.96/10.52(S) 
10.96/10.39(P) 

1.26~1.39(S) 
1.25~1.41(P) 

1.41(Exp.)f 
1.62(PBE) 

FASn(BH4) 7.32 3 
2.21(S) 
1.67(P) 

3.01/2.71(S) 
2.58/2.36(P) 

10.44/9.84(S) 
10.55/9.73(P) 

1.42~1.63(S) 
1.37~1.65(P) 

3.83(HSE) 
3.0(PBE) 

FAGeCl 8.24 3 
2.21(S) 
1.67(P) 

2.84/2.32(S) 
2.42/2.12(P) 

10.10/9.06(S) 
9.93/9.01(P) 

1.50~1.94(S) 
1.55~1.95(P) 

4.11(HSE) 
3.19(PBE) 

FAGeBr 7.68 3 
2.21(S) 
1.67(P) 

3.00/2.54(S) 
2.54/2.25(P) 

10.41/9.50(S) 
10.24/9.40(P) 

1.41~1.76(S) 
1.45~1.78(P) 

3.75(HSE) 
2.93(PBE) 

FAGeI 7.04 3 
2.21(S) 
1.67(P) 

3.14/2.84(S) 
2.65/2.44(P) 

10.70/10.10(S) 
10.70/9.97(P) 

1.34~1.54(S) 
1.33~1.57(P) 

2.5(HSE) 
1.98(PBE) 

FAGe(BH4) 7.02 3 
2.21(S) 
1.67(P) 

2.95/2.56(S) 
2.53/2.27(P) 

10.32/9.54(S) 
10.37/9.44(P) 

1.47~1.77(S) 
1.43~1.79(P) 

4.49(HSE) 
3.5(PBE) 

aExperimental values from Ref. 16. 
bExperimental values from Ref. 17. 
cExperimental value form Ref. 18. 
dExperimental values from Ref. 8. 
eDerived from the PBE value and the GW value of the material at its high-temperature cubic phase 
(Pm-3m) [6], by assuming that the GW correction to the band gaps obtained from PBE is the same for 
different phases of the material [17]. 
f

As shown in Table S11, the ionic radii of super-halogens in their pyramidal forms are 

significantly smaller than their radii in the symmetric form. By assuming the cation radii 

change little, this leads to larger radius ratio in the low-symmetry phase of the material. 

According to our model, this corresponds to larger band gaps compared to the high-symmetry 

phase, as shown in Table S13 for both Shannon-type and Pauling-type radii. Different hybrid 

perovskites may show different phases under the same ambient condition. For example, both 

MASnBr

Experimental values from Ref. 5. 
 
 
 

3 and MASnI3 show the high-symmetry phases of tetragonal and cubic phases at 

room temperature, while MASnCl3 shows the low-symmetry triclinic or monoclinic phase. 

Therefore, in order to compare the band gaps through materials, it is only fitting to represent 

the band gap of a material in a range with the value of the cubic phase as the lower bound and 
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the value of the low-symmetry phase (where the super-halogen is a pyramid with its three M-

X bond lengths close to dc) as the upper bound. Indeed, as observed in the available 

experiments and calculations, the cubic phase of a hybrid perovskite shows a smaller band 

gap compared to its low-symmetry phases. 
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VII. NBO analysis of the super alkali halides 
 

 
 

 
Fig. S11 NBO analysis of [Ge(BH4)3]− and [Sn(BH4)3]− hyper-halogens shows that the latter has 
larger bonding ionicity due to higher charge states although its radius ratio with the same cation is 
larger than the former.  
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VIII. DFT calculated electronic band structures 
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Fig. S12 DFT calculated electronic band structures of hybrid perovskites based on crystal structures 
obtained from the molecular dynamics simulations in Fig. S5 and relaxed ionic positions. The top of 
the valance band has been adjusted to zero energy in each case. All materials show direct band gaps. 
In each case, the left panel is from PBE calculation and the right panel is from HSE06 calculation. The 
"G" point in each case denotes the Γ point. 
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IX. DFT calculated electronic density of states  
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Fig. S13 DFT-PBE calculated electronic density of states (DoS). In each case, partial DoS analysis has 
been carried out. The top of the valance band is at zero energy. “H_dos” stands for the total density of 
states of the hydrogen. “Hc_dos” stands for the total density of states of the hydrogen associated with 
the cation. “Ha_dos” stands for the density of states from the hydrogen associated withthe anion. 
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X. Phonon calculations of MAGe(BH4)3 and MASn(BH4)3 

 
 

 
Fig. S14 Calculated phonon dispersions of MAGe(BH4)3 (upper) and MASn(BH4)3 based on crystal 
structures obtained from the molecular dynamics simulations under ambient condition and optimized 
ionic positions. MA stands for CH3NH3. 
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XI. Stability analyses of the hybrid perovskite under moisture 
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Fig. S15 NBO analysis for MAPbI3, MAPbBr3 and MAPb(BH4)3 super-salts bound to a water 
molecule. MA stands for CH3NH3

Table S14 Calculated binding energy between various super-salts and a water molecule. The 
bond length of M-X within [MX

. 
 
 
 

3]− super-ion is the averaged value in the optimized structure 
with the water molecule. MA and FA stand for CH3NH3 and  HC(NH2)2

Cluster 
, respectively.  

Binding energy (eV) Bond length of M-X (Å) 
MAGe(BH4) 0.652 3 2.68 

MAGeCl 0.711 3 2.38 
MAGeBr 0.694 3 2.54 
MAGeI 0.705 3 2.78 

MASn(BH4) 0.600 3 2.72 
MASnCl 0.763 3 2.56 
MASnBr 0.731 3 2.71 
MASnI 0.731 3 2.95 

MAPb(BH4) 0.593 3 2.76 
MAPbBr 0.782 3 2.80 
MAPbI 0.670 3 3.03 

FA 0.709 + − 
MA 0.824 + − 

[Li3O] 0.996 + − 
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XII. Vibrational spectra of super halide molecule with water 

 

 

 

 
 



  

77 
 

 

 

 
 



  

78 
 

 
Fig. S16 Simulated infrared spectra of molecules MAPbI3 and MAPbBr3 with one water molecule 
binding to them. MA stands for CH3NH3. The vibration modes involving the bond stretching of Pb-I 
and Pb-Br are indicated by the arrows in the plot. The Pb-Br bond shows significantly higher 
frequencies (148.15, 153.15 and 165.43 cm−1) of these modes than the Pb-I bond (112.40, 113.62 and 
128.79 cm−1

XIII. Inorganic super alkali [Li

). The corresponding displacements of the iodine and bromine are shown schematically in 
the figures a to f, respectively. 
 
 
 
 
 

3O]
 

+ 

 
Fig. S17 Planer inorganic super-alkali [Li3O]+. In its asymmetric configuration, it has an intrinsic 
dipole moment of 29.40 Debye as indicated by the blue arrow originating from the center of electronic 
charge. However, with symmetric constraint during the optimization, the dipole moment becomes zero. 
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XIV. Electronic structures of the hybrid perovskites composed of hyper 

halogens 

 

 
Fig. S18 DFT-PBE calculated electronic bands of newly-designed hybrid perovskites with iodine 
partially replaced by super halogen [BH4]−. MA and FA stand for CH3NH3 and HC(NH2)2, 
respectively. This indicates that MASnI2(BH4) should have smaller band gap than FAGeI2(BH4). The 
lattice parameters of [MA/FA][Ge/SnI3] are used with relaxed positions of the ions. The "G" point in 
each case denotes the Γ point. 
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XV. Bowing factors of AM[I1−x(BH4)x]3

 

 (A = MA and FA; M = Ge and Sn; 

x = 0, 1/3, 2/3, 1) from band gaps 

Table S15 DFT calculated band gaps for AM[I1−x(BH4)x]3 (A = MA and FA; M = Ge and Sn, x = 0, 
1/3, 2/3, 1) and the bowing factors from the polynomial fittings. MA and FA denote CH3NH3 and 
HC(NH2)2

 

, respectively. In each case, the value is from DFT-PBE result and the value in the bracket 
corresponds to the HSE result. 

Direct band gap at x (eV) Bowing 
Factor (eV)  0 0.333 0.667 1 a 

MAGe[I1−x(BH4)x] 1.95 (2.53) 3 1.65 (2.22) 2.44 (3.19) 3.23 (4.16) 2.45 (2.88) 
FAGe[I1−x(BH4)x] 1.98 (2.50) 3 1.62 (2.17) 2.54 (3.31) 3.50 (4.49) 2.97 (3.39) 
MASn[I1−x(BH4)x] 1.58 3 1.46 2.28 2.80 1.44 
FASn[I1−x(BH4)x] 1.62 3 1.31 2.30 3.00 2.27 

aThe HSE band gaps are derived from the PBE values assuming corrections of 0.75 eV and 0.77 eV for 
MAGe[I1/3(BH4)2/3]3 and FAGe[I1/3(BH4)2/3]3, respectively. In each case, the correction is the 
averaged correction by comparing the HSE and PBE gaps of the two cases x = 0.333 and x = 1. 
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Fig. S19 DFT calculated band gaps (Eg) for the admixtures AM[I1−x(BH4)x]3 (A = MA and FA; M = 
Ge and Sn, x = 0, 1/3, 2/3, 1). In each case, the bowing factor (b) is obtained by fitting the data points 
using a polynomial Eg (x) = E0 + ax + bx2. 
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