Supporting Information

Polyoxometalate-based metal-organic framework-derived hybrid electrocatalysts for highly efficient hydrogen evolution reaction

Ji-Sen Li,^{a,b} Yu-Jia Tang,^a Chun-Hui Liu,^a Shun-Li Li,^a Run-Han Li,^a Long-Zhang Dong,^a Zhi-Hui Dai,^{*a} Jian-Chun Bao,^a and Ya-Qian Lan^{*a}

^aSchool of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.

R. China

^bKey Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, P. R. China.

*E-mail: yqlan@njnu.edu.cn; daizhihuii@njnu.edu.cn

S1. Materials and Preparation of the catalysts

All reagents were analytical grade and used without further purification. All solutions used in electrochemical experiments were prepared with Millipore water ($\geq 18 \text{ M}\Omega$).

Synthesis of MIL-100 (Fe)

MIL-100 (Fe) was prepared following the protocol described earlier.^[1] In a typical synthesis, 5 mL of water solution consisting of $FeCl_3 \cdot 6H_2O$ (162.2 mg), and trimethyl 1,3,5-benzenetricarboxylate (138.7 mg) were thoroughly dissloved with ultrasonication. Subsequently, the solution was heated at 130 °C for 72 h in a Teflon reactor. The resulting brown solids were isolated by centrifuging, and were washed with acetone.

Synthesis of PMo12@MIL-100 (Fe)

50 mL of water solution consisting of FeCl₃· $6H_2O$ (1.89 g), and $H_3PMo_{12}O_{40}$ (3.15 g) were thoroughly dissloved with ultrasonication. Then, trimethyl 1,3,5-benzenetricarboxylate (1.36 g) was added into the above solution. Subsequently, the solution was heated at 130 °C for 72 h in a Teflon reactor. The resulting brown solids were isolated by centrifuging, and were washed with ethanol and ether.

Synthesis of Fe₃C/Mo₂C@NPGC

1 g of PMo12@MIL-100 (Fe) and 1g of melamine were mixed by ball milling. And then, the mixture was pyrolyzed in a flow of ultrapure N₂ at different temperatures (700, 900, and 1100 °C) for 5 h with the heating rate of 5 °C min⁻¹. The obtained samples were acid etched in H₂SO₄ (0.5 M) by 24 h of continuous agitation at 80 °C to remove unstable and inactive species. The etched samples were then thoroughly washed with de-ionized water until reaching a neutral pH, and defined as Fe₃C/Mo₂C@NPGC-700, Fe₃C/Mo₂C@NPGC-900 (Fe₃C/Mo₂C@NPGC), and Fe₃C/Mo₂C@NPGC-1100, respectively.

Synthesis of Fe₃C@C

1 g of MIL-100 (Fe) was pyrolyzed in a flow of ultrapure N₂ at 900 °C for 5 h with the heating rate of 5 °C min⁻¹. The obtained samples were acid etched in H₂SO₄ (0.5 M) by 24 h of continuous agitation at 80 °C to remove unstable and inactive species. The etched samples were then thoroughly washed with de-ionized water until reaching a neutral pH, and defined as Fe₃C@C.

Synthesis of Fe₃C/FeMo/Mo₂C

1 g of PMo12@MIL-100 (Fe) was pyrolyzed in a flow of ultrapure N₂ at 900 °C for 5 h with the heating rate of 5 °C min⁻¹. The obtained samples were acid etched in H₂SO₄ (0.5 M) by 24 h of continuous agitation at 80 °C to remove unstable and inactive species. The etched samples were then thoroughly washed with de-ionized water until reaching a neutral pH, and

defined as Fe₃C/FeMo/Mo₂C.

Characterizations

The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were recorded on JEOL-2100F apparatus at an accelerating voltage of 200 kV. Surface morphologies of the carbon materials were examined by a scanning electron microscope (SEM, JSM-7600F) at an acceleration voltage of 10 kV. The energy-dispersive X-ray spectroscopy (EDS) was taken on JSM-5160LV-Vantage typed energy spectrometer. The powder X-Ray diffraction (XRD) patterns were recorded on a D/max 2500VL/PC diffractometer (Japan) equipped with graphite monochromatized Cu K α radiation ($\lambda = 1.54060$ Å). Corresponding work voltage and current is 40 kV and 100 mA, respectively. X-ray photon spectroscopy (XPS) was recorded by a scanning X-ray microprobe (PHI 5000 Verasa, ULAC-PHI, Inc.) using Al k α radiation and the C1s peak at 284.8 eV as internal standard. The Raman spectra of dried samples were obtained on Lab-RAM HR800 with excitation by an argon ion laser (514.5 nm). The nitrogen adsorption-desorption experiments were operated at 77 K on a Micromeritics ASAP 2050 system. The pore size distributions were measured by Barret-Joyner-Halenda (BJH) model. Prior to the measurement, the samples were degassed at 150 °C for 10 h.

Electrochemical Measurements

All electrochemical experiments were conducted on a CHI 760 D electrochemical station (Shanghai Chenhua Co., China) in a standard three electrode cell in 0.5 M H₂SO₄ at room temperature. A glassy carbon electrode (GCE, 3 mm in diameter), an Ag/AgCl with saturated KCl, and a Pt wire were used as the working electrode, reference and counter electrode, respectively. 4 mg of the catalysts were dispersed in 2 mL of 9:1 v/v water/Nafion by sonication to form a homogeneous ink. Typically, 5 μ L well-dispersed catalysts were covered on the glassy carbon electrode and then dried in an ambient environment for measurements. The electrocatalyst was prepared with a catalyst loading of 0.14 mg cm⁻². Commercial 20% Pt/C catalyst was also used as a reference sample. Linear sweep voltammetry (LSV) was tested with a scan rate of 5 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) measurements were carried out from 1000 kHz to 100 mHz with an amplitude of 10 mV at the open-circuit voltage. The electrochemical stability of the catalyst was conducted by cycling the potential between -0.3 and 0.3 V vs RHE at a scan rate of 100 mV s⁻¹. The Chronoamperometry (CA) were tested at an overpotential of -0.12 V vs RHE after

equilibrium. To estimate the electrochemical active surface areas of the catalysts, cyclic voltammograms (CV) was tested by measuring double-layer capacitance (EDLC) under the potential window of 0.19 – 0.39 V vs RHE with various scan rate (20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 mV s⁻¹). A flow of N₂ was maintained over the electrolyte during the experiment to eliminate dissolved oxygen. The potential vs RHE was converted to the reversible hydrogen electrode (RHE) via the Nernst equation: $E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.059 \text{ pH} + E_{\rm Ag/AgCl}^{0}$. In 0.5 M H₂SO₄, $E_{\rm RHE} = 0.21 \text{ V} + E_{\rm Ag/AgCl}$.

(1) Canioni R., Roch-Marchal C., Secheresse F., Horcajada P., Serre C., Hardi-Dan M., Ferey G., Greneche J.-M., Lefebvre F., Chang J.-S., Hwang Y.-K., Lebedev O., Turner S. and Tendeloo G. Van, *J. Mater. Chem.* 2011, *21*, 1226-1233.

S2. Figures in Supporting Information

Fig. S1 TEM of MIL-100 (Fe) and PMo₁₂@MIL-100 (Fe)

Fig. S2 XRD of MIL-100 (Fe), H₃PMo₁₂O₄₀@MIL-100 (Fe), and MIL-100 (Fe) simulated, respectively.

Fig. S3 Typical SEM image (A), low and high magnification TEM images (B-C), STEM image and EDX elemental mapping of C, Mo, Fe, N, and P (D), scale bar 50 nm. EDS spectrum (E), XRD pattern (F), and Raman spectrum (G) of $Fe_3C@C$.

Fig. S4 Typical SEM image (A), TEM image (B), HRTEM images (C-D), XRD pattern (E), and EDS spectrum (F) of Fe₃C/FeMo/Mo₂C.

SEM and TEM images of Fe₃C@C (Fig. S3A-C) show that a handful of nanoparticles are distributed on the porous carbon. From the inset of Figure S3C, the Fe₃C (201) plane can be obviously seen with a lattice spacing of 0.222 nm. The element mapping images are shown in Fig. S3D, clearly revealing the Fe₃C@C catalyst consists of C and Fe, which is consistent with that of EDS (Fig. S3E). The crystalline phase of Fe₃C@C characterized by PXRD is illustrated in Figure S3F. The peaks located at 43.5, and 44.7 ° are indexed to the (201), and (211) planes of Fe₃C (JCPDS-65-2412), respectively. Fig. S3G exhibits the Raman spectrum of Fe₃C@C. Due to the absence of melamine, the corresponding graphitic degree of Fe₃C@C is lower than that of Fe₃C/Mo₂C@NPGC. On the other hand, the morphology and crystal structure of Fe₃C/FeMo/Mo₂C were also examined, similar to Fe₃C@C. However, it is found that nanoparticles are aggregated together and no porous carbon is existent (Fig. S4A-B). From HRTEM images (Fig. S4C-D), the lattice spacings of 0.376, 0.461, and 0.261 nm, are assigned to the (011) plane of Fe₃C, (200) plane of FeMo, and (100) plane of Mo₂C. PXRD pattern indicates that the peaks at 34.4, 39.4, 52.2, 61.7, 69.7, and 75.4 ° ascribed to (100), (101), (102), (110), (103), and (202) planes of Mo₂C (JCPDS-35-787). The peaks around 43.1, 44.9 and 43.78 ° arise from Fe₃C (JCPDS-65-2412). The additional peaks are assigned to FeMo (JCPDS-65-9117). Figure S4F demonstrates the EDS spectrum, verifying the existence of Fe, Mo, and C.

Fig. S5 N_2 adsorption-desorption isotherms (A) and pore size distributions (B) of different samples by BJH model.

Fig. S6 High-resolution scans of O 1s electrons of Fe₃C/Mo₂C@NPGC.

Fig. S7. (A-B) High-resolution scans of C 1s, and Fe 2p electrons of Fe₃C@C.

Fig. S8 (A-B) High-resolution scans of Fe 2p and Mo 3d electrons of Fe₃C/FeMo/Mo₂C.

Fig. S9 Calculation of exchange current density of different samples.

Tafel plot is fit into the Tafel equation ($\eta = b \log (j) + a$, where b is the Tafel slope). The corresponding exchange current density (j_0) was calculated by extrapolation methods when $\eta = 0$ V.

Fig. S10 Cyclic voltammetrys of (A) $Fe_3C@C$, (C) $Fe_3C/FeMo/Mo_2C$, and (E) $Fe_3C/Mo_2C@NPGC$. (B, D, F) The corresponding capacitive currents at 0.29 V as a function of scan rate for $Fe_3C@C$, $Fe_3C/FeMo/Mo_2C$, and $Fe_3C/Mo_2C@NPGC$.

Fig. S11 Electrochemical impedance spectra (EIS) of three electrocatalysts over the frequency ranging from 1000 kHz to 0.1 Hz at the open-circuit voltage. Inset denotes the magnified images of high frequency region.

EXAMPLE 1 EXAMPLE 1 EXAMP

Fig. S13 Typical SEM image (A), low and high magnification TEM images (B-C), STEM image and EDX elemental mapping of C, Mo, Fe, N, and P (D), scale bar 50 nm. EDS spectrum (E), of $Fe_3C/Mo_2C@NPGC$ (1100 °C).

Fig. S14 XRD patterns (A), and Raman spectra (B) of Fe₃C/Mo₂C@NPGC carbonized at 700, 900, and 1100 °C, respectively.

Fig. S15 (A-F) XPS survey spectra and high-resolution scans of C 1s, N 1s, P 2p, Fe 2p, and Mo 3d electrons of Fe₃C/Mo₂C@NPGC (700 °C), respectively.

Fig. S16 (A-F) XPS survey spectra and high-resolution scans of C 1s, N 1s, P 2p, Fe 2p, and Mo 3d electrons of Fe₃C/Mo₂C@NPGC (1100 °C), respectively.

Fig. S17 N₂ adsorption-desorption isotherms (A) and (B) porous size distributions of different samples by BJH model.

S3. Tables in Supporting Information

catalysts	C (at. %)	N (at. %)	O (at. %)	P (at. %)	Mo (at. %)	Fe (at. %)	BET surface area (m ² g ⁻¹)
Fe ₃ C@C	91.78		7.98			0.24	470
Fe ₃ C/FeMo/Mo ₂ C	29.34		50.58		14.26	5.82	40
Fe ₃ C/Mo ₂ C@NPGC-700	75.82	2.59	6.85	0.48	13.81	0.45	118
Fe ₃ C/Mo ₂ C@NPGC	73.03	1.82	10.3	0.37	14.06	0.42	128
Fe ₃ C/Mo ₂ C@NPGC-1100	73.87	1.5	10.45	0.25	13.93	0.38	120

Table S1. Atomic percents of different catalysts by XPS measurement and BET surface area.

 Table S2 Comparison of the electrocatalytic activity of non-noble metal catalysts reported recently for HER

Catalyst	Onset potential (mV)	Tafel slope (mV dec ⁻¹)	J ₀ (A cm ⁻ ²) ^[1]	$\eta_{10} \ (mV)^{[2]}$	Ref.
Fe ₃ C/Mo ₂ C@NPGC	~18	45.2	1.04×10 ⁻⁴	98	This work
NiMoN _x /C	78	35.9	2.4×10 ⁻⁴	~	Angew. Chem. Int. Ed., 2012, 51, 6131
MoC _x	25	53	2.3×10 ⁻⁵	142	Nat. Commun. 2015, 6, 6512
MoP-CA2	40	54	8.6×10 ⁻⁵	125	Adv. Mater. 2014, 26, 5702
P-WN/rGO	46	54	3.5×10-4	85	Angew. Chem. Int. Ed. 2015, 54, 6325
Mo ₂ C-RGO	70	57.3	~	130	Chem. Commun. 2014, 50, 13135
Mo ₂ C/CNT-GR	62	58	6.2×10 ⁻⁵	130	ACS Nano, 2014, 8, 5163
Cu ₃ P NW/CF	62	67	1.8×10-4	143	Angew. Chem. Int. Ed. 2014, 53, 9577
Fe-WCN	100	~	~	220	Angew. Chem. Int. Ed. 2013, 125, 13883
CoNi@NC Mo1Soy-RGO MoCN	~0 50 50	104 63 48	~ 3.7×10 ⁻⁵ ~	142 109 140	Angew. Chem. Int. Ed. 2015 , 54, 2100 Energy Environ. Sci. 2013 , 6, 1818 J. Am. Chem. Soc. 2015 , 137, 110

Note: ^[1] represents the exchange current density, ^[2] represents the overpotential (η) at the current density of 10 mA cm⁻²,