Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Support Information for

Iron-Based Sodium-Ion Full Batteries

Hualin Ye, Yeyun Wang, Feipeng Zhao, Wenjing Huang, Na Han, Junhua Zhou, Min Zeng,

Yanguang Li*

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123,

China

E-mail: <u>yanguang@suda.edu.cn</u>

Figure S1. Thermogravimetric (TGA) curve of CNT/FeO_x in air.

Figure S2. XRD pattern of Na_xFeFe(CN)₆ powders.

Figure S3. SEM images of FeO_x prepared in the absence of CNTs.

Figure S4. TEM images of CNT/FeO_x hybrid materials after the initial discharge. These dark particles correspond to metallic Fe as the discharge product.

Figure S5. TEM images of CNT/FeO_x after 100 charge/discharge cycles. They suggest the preservation of electrode material integrity even after extended cycling.

Figure S6. (a) XRD pattern of annealed composite suggesting the formation of Fe_3O_4 phase. (b) Cycling performance and coulombic efficiency of annealed composite at a specific current of 50 mA/g. The material was prepared by annealing as-prepared CNT/FeO_x composite under Ar at 500°C for 2 h.

	Materials	Specific capacity (mAh/g)	Capacity retention (%)	Reference
Prussian blue cathodes	PB nanocubes	120 @25 mA/g	100% after 200 cycles@90mA/g	Our work
	PB/C composite	87@9 mA/g	88% after 500 cycles@90 mA/g	Adv. Energy Mater., 2012, 2, 410.
	Na _{1.63} FeFe(CN) ₆ nanocubes	150@25 mA/g	90% after 200 cycles@25 mA/g	Nano Res., 2014, 8, 117.
	Na _{1.72} MnFe(CN) ₆ nanocubes	121@6 mA/g	96% after 30 cycles@6 mA/g	Angew. Chem., 2013, 52, 1964.
	Na _x FeFe(CN) ₆ nanocubes	120@200 mA/g	76% after 100 cycles@200 mA/g	Nano Energy, 2015, 12, 386.
Iron oxide anodes	Amorphous CNT/ FeO _x nanocomposites	410@50 mA/g	88% after 200 cycles@1 A/g	Our work
	Fe ₂ O ₃ nanoclusters	400@40 mA/g	71% after 60 cycles@130 mA/g	J. Power Sources, 2014, 245, 967.
	RGO/Fe ₃ O ₄ nanocomposites	204@40 mA/g	54% after 200 cycles@40 mA/g	J. Mater. Chem. A, 2015, 3, 4793.
	γ-Fe2O3@C nanocomposites	737@200 mA/g	98% after 200 cycles@200 mA/g	Adv. Energy Mater., 2015, 5, 1401123.
	α-Fe ₂ O ₃ /rGO nanocomposites	310@20 mA/g	76% after 150 cycles@100 mA/g	J. Power Sources, 2015, 280, 107.

Table R1. Summary of previous works on Fe_2O_3 or Fe_3O_4 anode materials and Prussian blue (PB) cathode materials for Na-ion batteries.