Supporting Information

Phenyl-Rich Silicone Oil as a Precursor for SiOC Anode Materials in Long-

Cycle and High-Rate Lithium Ion Batteries

Martin Halim, ^{‡a,b} Chairul Hudaya, ^{‡a,b,c} A-Young Kim^{a,d} and Joong Kee Lee^{*a,b}

^aCenter for Energy Convergence, Korea Institute of Science and Technology, Seoul 02792,

Republic of Korea. E-mail: leejk@kist.re.kr

^bEnergy and Environmental Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.

^cDepartment of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16421, Republic of Indonesia.

^dDepartment of Material Science and Engineering, Korea University, Seoul 02841, Republic of Korea.

[‡]These authors contributed equally to this work

*Email : leejk@kist.re.kr

Fig. S1. (a) Digital image of the resulting SiOC after pyrolysis method. (b) SEM image of the SiOC after pulverization. The resulting SiOC after pyrolysis was a solid dense block. The SiOC was then pulverized with ball milling for 1 hour to get a fine powder.

Fig. S2. Thermogravimetric analysis (TGA) of silicone oil precursors from three different suppliers: BRA, APR, SIG.

Fig. S3. Chemical bonding confirmation in SiOC by (a) FTIR and X-ray photoelectron spectroscopy (XPS) spectra of SiOC (b) Si_{2p} , (b) O_{1s} , and (b) C_{1s} .

Fig. S4. Galvanostatic cycle performance of SiOC at varied current densities, 50, 200 and 1000 mA g^{-1} .

Calculation of Li⁺ Diffusion Coefficient

Lithium diffusion coefficient (D_{Li}^{+}) within SiOC anode material is calculated based on the Randles-Sevcik equation:

$$i = 2.69 \times 10^5 n^{1.5} A D_{Li+}^{0.5} C_{Li} v^{0.5}$$

where, i is the peak current (A), *n* is the number of electrons per species reaction (1 for lithium ion), *A* is the electrode surface area (1.131 cm⁻²), D_{Li}^+ is the lithium ion coefficient within the SiOC anode material, *v* is the potential scan rates and C_{Li} is the lithium concentration in electrolyte (10⁻³ mol cm⁻³). The value of *i* and $v^{0.5}$ can be obtained from the cyclic voltammetry in Fig. S5a. The relationship of *i* and $v^{0.5}$ is expressed in the linear equation as shown in Fig. S5b. Further, the gradient obtained in Fig. S5b is used to determine the value of lithium diffusion coefficient (D_{Li+}) within SiOC.

Fig. S5. (a) Cyclic voltammetry profile of SiOC at varied scan rates. (b) Plot of the peak current and square root of the scan rate of the SiOC anode materials.

Fig. S6. Cyclic voltammetry (CV) profiles of (a) pristine Si microparticle, (b) Si/C composite, and (c) SiOC at the scan rate of 0.2 mV s^{-1} and cut-off voltage of 0.001 - 3.0 V.

	r	
1	Si	59
2	Fe	0.0033
3	Ni	0.0061
4	Zr	0.0166
5	С	39.9
6	Н	1.1

Table S1. Material composition and mass ratio (%) of SiOC by X-ray fluoroscence (XRF)analysis.NoComponentResult (mass %)

Material composition of SiOC mostly consists of Si and C (6:4). Meanwhile, the Fe, Ni, and Zr might come from the trace impurities in the precursor and from the pulverization process using ball milling.

Published Year	SiOC Precursor	Current density	Discharge capacity (mA h g ⁻¹)	Number of cycle	Reference
-	Silicone oil	50 mA g ⁻¹	1050	80	this work
		200 mA g ⁻¹	800	250	this work
		1000 mA g ⁻¹	520	80	this work
2015	Polyhydridomethylsiloxane (PHMS) + divinylbenzene (DVB) + platinum divinyltetramethyldisiloxane	360 mA g ⁻¹	600	50	[1]
2013	polyorganosiloxane (Polyramic® RD-684)	37 mA g ⁻¹	666	10	[2]
2012	polyorganosiloxane (Polyramic® RD-684)	37 mA g^{-1}	532	10	[3]
2012	polyhydridomethylsiloxane (PHMS)	18 mA g ⁻¹	190	10	[4]
2011	Tetramethyl-tetravinylcyclotetrasiloxane + dicumyl peroxide	100 mA g ⁻¹	637	60	[5]
2009	Graphene oxide + polyhydrodimethylsiloxane (PHMS)	40 mA g ⁻¹	357	20	[6]
2005	polysiloxanes	0.15 mA cm^{-2}	550	10	[7]
1999	pitch + polyphenylmethyl silane	-	500	2	[8]
1994	polymethylphenylsiloxane (Dow 710 fluid)	74 mA g^{-1}	380	25	[9]

Table S2. Electrochemical performance of SiOC anode materials in lithium ion batteries prepared by using different precursors

References

- [1] V. S. Pradeep, D. G. Ayana, M. G.-Zajac, G. D. Soraru and R. Riedel, *Electrochim. Acta*, 2015, **157**, 41-45.
- [2] J. Kaspar, M. Graczyk-Zajac and R. Riedel, J. Power Sources, 2013, 244, 450-455.
- [3] J. Kaspar, M. Graczyk-Zajac and R. Riedel, Solid State Ionics, 2012, 225, 527-531.
- [4] P. Dibandjo, M. Graczyk-Zajac, R. Riedel, V. S. Pradeep and G. D. Soraru, *J. Eur. Ceram. Soc.*, 2012, **32**, 2495-2503.
- [5] D. Ahn and R. Raj, J. Power Sources, 2011, **196**, 2179-2186.
- [6] F. Ji, Y. L. Li, M. Feng, D. Su, Y. Y. Wen, Y. Feng and F. Hou, *J. Mater. Chem.*, 2009, 19, 9063-9067.
- [7] L. J. Ning, Y. P. Wu, L. Z. Wang, S. B. Fang and R. Holze, *J. Solid State Electrochem.*, 2005, 9, 520-523.
- [8] D. Larcher, C. Mudalige, A. E. George, V. Porter, M. Gharghouri and J. R. Dahn, *Solid State Ionics*, 1999, **122**, 71-83.
- [9] A. M. Wilson, J. N. Reimers, E. W. Fuller and J. R. Dahn, *Solid State Ionics*, 1994, 74, 249-254.