Supplementary Information

Hierarchical architecture of hybrid carbon-encapsulated hollow manganese oxide nanotube with porous-wall structure for high-performance electrochemical energy

storage

Geon-Hyoung An^a, Jung Inn Sohn^{*,b}, and Hyo-Jin Ahn^{*,a}

^aDepartment of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea ^bDepartment of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK E-mail address:hjahn@seoultech.ac.kr;junginn.sohn@eng.ox.ac.uk Fax: +82-(2)-973-6657; +44-1865-273010

Experimental Details

Materials. Polyacrylonitrile (PAN, M_w = 150,000), *N*,*N*-Dimethylformamide (DMF, ≥99%), sulphuric acid (H₂SO₄, 95.0-98.0%), potassium permanganate (KMnO₄,≥99.0%), glucose solution (~20% in H₂O), n-methyl–2–pyrrolidinone (NMP, 99.5 %), poly(vinylidene fluoride) (PVDF, M_w = ~534,000), and manganese (III) oxide (Mn₂O₃, 99.99%) were purchased from Sigma–Aldrich. All the chemicals were used without any further purification. **Synthesis of carbon-encapsulated porous hollow Mn₂O₃ nanotubes. Carbon-encapsulated porous hollow Mn₂O₃ nanotubes (C-PHNT) were successfully synthesized using a simple microwave process followed by a hydrothermal method. First, carbon nanofibres (CNFs)**

were fabricated as template materials using an electrospinning method. To synthesize the CNFs, 10 wt% PAN was dissolved in DMF. For the electrospinning process, the DC voltage and feeding rate were fixed at ~13 kV and 0.03 mL h⁻¹, respectively. The distance between the aluminium foil collector and capillary tip was fixed at ~15 cm. The as-spun PAN nanofibres were stabilized at 280 °C for 2 h in ambient air and carbonized at 800 °C for 2 h in nitrogen atmosphere. After calcination, the CNFs were successfully formed. Second, to obtain the hollow MnO₂ nanotubes, 0.05 g CNFs were dissolved in deionized (DI) water and 2.0 M H₂SO₄ with vigorous stirring at 80 °C for 0.5 h, and then 6 m mol KMnO₄ was added with vigorous stirring for 0.5 h. They were washed several times with DI water and dried using a convection oven at 80 °C. Then, to form porous hollow Mn₂O₃ nanotubes, hollow MnO₂ nanotubes were sintered using microwave treatment with a wavelength of 2.45 GHz at 400, 500, 600, and 700 °C for 5 min at a heating rate of 20 °C/min in air. Finally, the porous hollow Mn₂O₃ nanotubes were well encapsulated with carbon using a hydrothermal method. For this process, the porous hollow Mn₂O₃ nanotubes dissolved in 30 mL of 0.1 M glucose aqueous solution were transferred into a 120-mL Teflon-sealed autoclave and then maintained at 180 °C for 3 h. The resultant samples after the encapsulation of carbon were calcined at 400 °C for 2 h under argon atmosphere to achieve improved crystallinity of the coated carbon. We obtained four different types of C-PHNTs microwave-treated at 400 °C, 500 °C, 600 °C, and 700 °C (herein called C-PHNT 400, C-PHNT 500, C-PHNT 600, and C-PHNT 700, respectively).

The structure, morphology, and chemical bonding states of the samples were investigated by field-emission scanning electron microscopy (FESEM; Hitachi S-4800) and transmission electron microscopy (MULTI/TEM; TecnaiG², KBSI Gwangju Center). The crystal structures and chemical bonding states were examined using X-ray diffractometry (XRD, Rigaku D/MAX2500 V) in the range from 10° to 90° with a step size of 0.02° and X-

ray photoelectron spectroscopy (XPS, ESCALAB 250) with an Al K_{α} X-ray source under a base pressure of 267 nPa.

Electrochemical characterization. Electrochemical measurements were performed using coin cells (CR2032, Hohsen Corporation) composed of C-PHNTs as the anode, Li metal foil (Honjo Chemical, 99.8%) as the cathode, a 1.0 M LiPF₆ solution in a mixture of ethylene carbonate-dimethyl carbonate (1:1) as the electrolyte, and a porous polypropylene membrane (Celgard 2400) as the separator. The C-PHNT electrodes were prepared on a Cu foil substrate (Nippon Foil, 18 µm) as the current collector by coating an NMP based slurry with a mixture of 80 wt% of active materials, 10 wt% Ketjen black as the conducting material, and 10 wt% PVDF as the binder. The electrode slurry was coated on a Cu foil substrate about 20 µm in thickness. The resultant electrodes were dried in an oven at 100 °C for 12 h. The mass loading of C-PHNT was optimized and fixed with 11.3±0.5 mg cm⁻². All the coin cells were assembled in an argon-filled glove box with H₂O and O₂ contents of less than 5 ppm. Cyclic voltammetry (CV) measurements were performed at a scan rate of 0.1 mV s⁻¹ in the voltage range of 0-3 V (versus Li/Li⁺) using a potentiostat/galvanostat (Eco chemie Autolab, PGSTAT302N). The charge-discharge performance was investigated using a battery cycler system (Won-A Tech, WMPG 3000) in the potential range of 0–3 V (versus Li/Li⁺). The rate performance was measured using the same instrument at current densities of 100, 300, 500, 700, and 100 mA g⁻¹. Electrochemical impedance spectroscopy (EIS) measurements were performed in the frequency range of 10^5 to 10^{-2} Hz by applying an AC signal of 5 mV.

Fig. S1 XRD patterns of pure Mn₂O₃, C-PHNT 400, C-PHNT 500, and C-PHNT 600.

The hollow MnO₂ nanotubes exhibited unclear reflections in the XRD pattern because of the amorphous structure. The main characteristic diffraction peaks of C-PHNTs were observed at 23.1°, 32.9°, 38.2°, and 55.1°, which correspond to the (211), (222), (400), and (440) planes of Mn₂O₃, respectively (space group Ia³[206]; JCPDS card No. 71-0636). These XRD results are in good agreement with the TEM and XPS results (Figs. 2d and 2e).

Fig. S2 FESEM images of four different types of PHNFs microwave-treated at (a) 400 °C, (b) 500 °C, (c) 600 °C, and (d) 700 °C before carbonation.

Fig. S3. TGA curves of C-PHNT 600 from 150 to 700 °C at a heating rate of 10 °C min⁻¹ under air environment.

Fig. S4 CV curves of the (a) commercial Mn_2O_3 , (b) C-PHNT 400, (c) C-PHNT 500, and (d) C-PHNT 600 at a scan rate of 0.1 mV s⁻¹ in the voltage range of 0–3 V (versus Li/Li⁺).

Fig. S5 Comparison of high-rate performance with previously reported studies of Mn_2O_3 -based anode materials in LIBs.

Fig. S6 FESEM images of C-PHNT 600 after 100 cycles at a current density of 100 mA g⁻¹.

Fig. S7 Cycling performance of the charge–discharge capacities of C-PHNT 600 at current density of 700 mA g⁻¹ up to 100 cycles.

Fig. S8 Cycling performance of the charge–discharge capacities of PHNT without carbon encapsulation layers and C-PHNT 600 at current density of 100 mA g⁻¹ up to 100 cycles.

Fig. S9 Nyquist plots of the PHNT without carbon encapsulation layers and C-PHNT 600 in the frequency range of 10^5 to 10^{-2} Hz before the charge–discharge tests.

Material	Capacity (mA h g ⁻¹)	Current density (mA g ⁻¹)	Ref.
C-PHNT based manganese oxide	875, 100cycle	100	This work
Porous Mn ₂ O ₃ nanoplates	813, 50cycle	100	26
Porous Mn ₂ O ₃ microspheres	796, 50cycle	100	25
Porous Mn ₂ O ₃ hierarchical microspheres	748, 45cycle	50	29
Mn ₂ O ₃ microspheres	524 200cycle	200	28
Porous Mn ₂ O ₃	521, 100cycle	300	27
Mn ₂ O ₃ nanofibers	404 30cycle	100	31
Hollow Mn ₂ O ₃ nanocones	280, 200cycle	200	30
Spherical Mn ₂ O ₃	265, 15cycle	200	32

Table S1 Cycling stability comparison of previously reported Mn_2O_3 -based anode materialswith various geometries in LIBs.

Graphic abstract

Uniquely designed hierarchical architecture of hybrid carbon-encapsulated porous hollow nanotube with favorable routes and sites for Li ion insertion/extraction, resulting in the improved high-rate performance and cycling stability.