The Improved Efficiency of Quantum-Dot-Sensitized Solar Cells with a Wide Spectrum and Pure Inorganic Donor-Acceptor Type Polyoxometalate as a Collaborative Cosensitizer

Li Chen,^a Weilin Chen,^{a*} Huaqiao Tan,^a Jiansheng Li,^b Xiaojing Sang,^b and Enbo Wang ^{a*}

^a Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China

^b School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China

CONTENTS

Supplementary Physical and Chemical Characterizations

Fig. S1 The normal Raman spectrum for T.

Raman spectrum, which was studied as a kind of scattering spectrum, could provide the structure of POMs by researching their vibration and rotation energy. In the Fig. S1, the bands from 800-900 cm⁻¹ were associated with the stretching mode of W-O_b-W or W-O_c-W and 900-1000 cm⁻¹ were associated with the stretching mode of W-Ot. Beyond that the lower energy regions were associated with the bending mode of W-Ob-W or W-Oc-W or Si-O. Therefore the normal Raman spectrum can confirm the structure of prepared T.

Fig. S2 TG curve of T. The thermal stability of T was analyzed by its TG curve, which displayed three-step weightlosses occurred in the temperature range of 50-600°C. The three-step weightlosses were all attributed to the loss of water.

Fig. S3 EDS spectrum for a) pure TiO_2 ; b) $T1@TiO_2$; c) $T2@TiO_2$; d) $T3@TiO_2$; f) T4@TiO_2.

Fig. S4 Element mapping of $T3@TiO_2$ powder: a) the SEM image of the $T2@TiO_2$; b) the element mapping of Si; c) the element mapping of Ti; d) the element mapping of Co; f) the element mapping of W.

Fig. S5 The X-ray photoelectron spectroscopy of Ti of T3@TiO₂. The Fig. S5 exhibits two peaks at ca. 458.2 eV in the energy region of $Ti_{2p3/2}$ and ca. 463.9 eV in the energy region of $Ti_{2p1/2}$, which are consistent with the Ti^{IV} oxidation state.^{S1}

Fig. S6 The elemental mass ratio of W/Ti in T1@TiO₂, T2@TiO₂, T3@TiO₂, T4@TiO₂. The loading amount of T in the composites was determined by inductively coupled plasma atomic emission spectrometer(ICP-AES), from which the W content in composites was 3.78%, 7.49%, 14.17%, 21.10% respectively.

Fig. S7 The SEM images of the prepared $T2@TiO_2$ under the low multiples.

Fig. S8 The SEM images of the prepared $T2@TiO_2$ under the high multiples.

Fig. S9 The SEM images of different photoanode films: a) pure TiO_2 film; b) T3@TiO_2 film, which showed that pure TiO_2 film consisted of uniform TiO_2 particles, whereas T2@TiO_2-doped film contained some agminated micropore ball.

Fig. S10 Cyclic voltammetry curve of the T in 0.5M HAc/NaAc buffer solution with pH = 6.00 in the voltage range from 0 V to -1.2 V

Fig. S11 Cyclic voltammetry curve of the T in 0.5M HAc/NaAc buffer solution with pH = 6.00 in the voltage range from 0V to 1.2V.

Fig. S12 the electron lifetime calculated from OCVD of CdSe sensitized T1@TiO₂, T2@TiO₂, T3@TiO₂ and T4@TiO₂ cells; the Inset) the electron lifetime calculated from OCVD of CdSe sensitized pure TiO₂ and T0@TiO₂ cells.

Fig. S13 UV-vis absorption spectra of CdSe sensitized pure TiO_2 and $T@TiO_2$ photoanode films after deposition for 6h.

Absorption spectra of CdSe sensitized pure TiO₂ and T@TiO₂ photoanode films were shown in Fig. S13. As can be see from the Fig. S13, the absorbance of CdSe sensitized TO@TiO₂ photoanode films are slightly larger than the CdSe sensitized pure TiO₂ photoanode films. The possible reason is that the large particles of TiO₂ are conducive to the absorption of the spectrum. Furthermore, the absorbance of CdSe sensitized T@TiO₂ (T1@TiO₂, T2@TiO₂, T3@TiO₂, T4@TiO₂) photoanode films increased with the increase of the content of T. And the absorbance of CdSe sensitized T@TiO₂ (T1@TiO₂, T2@TiO₂, T3@TiO₂, T4@TiO₂) photoanode films are obvious wider than the CdSe sensitized pure TiO₂ photoanode films in the range from the 550 to 600nm and after 650nm. Experimental results show that T added to the photoanodes as collaborative cosensitizer can constitute a wider spectrum of absorption.

Table S1 Simulated values of resistance (Rrec) and capacitance (C μ) for cell devices based on CdSe sensitized pure TiO₂ and T@TiO₂ photoanodes at the forward bias of -0.60 V.

Cells	TiO ₂	T0@TiO ₂	T1@TiO ₂	T2@TiO ₂	T3@TiO ₂	T4@TiO ₂
$R_{rec}/\Omega\;cm^{\text{-}2}$	49	65	153	254	310	144
$C_{\mu}/mF\ cm^{-2}$	3.21	3.23	3.31	3.39	3.27	3.18

References

S1 M. Vasilopoulou, A. M. Douvas, L. C. Palilis, S. Kennou, and P. Argitis, J. Am. Chem. Soc. 2015, 137, 6844–6856.