Ni Nanoparticle Doped porous VN Nanoflake Assembled into Hierarchical Hollow Microspheres with a Structural Inheritance from the Ni_{1-x}V_xO₂ cathode material for High Performance Asymmetric Supercapacitor

Chenchen Ji,¹ Jinglei Bi,¹ Shan Wang,¹ Xiaojing Zhang,¹ and Shengchun Yang^{1,2*}

1 MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.

2 Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Academy of Xi'an jiaotong University, 215000, Suzhou, People's Republic of China. Email: ysch1209@mail.xjtu.edu.cn, +86-29-82663034.

Fig.S1. Panoramic SEM images of the (a) Ni_{1-x}V_xO₂ HHMS and the (b) Ni/VN HHMS samples.

Fig.S2. Time-dependent experiments for the growth of HHMS structure. Growth at (a and b) 6 h, (c and d) 12 h, (e and f) 18 h, and (g and h) 24 h, respectively.

Fig.S3. (a-b) SEM images of the VO_2 sample. (c-d) SEM images of the VN sample. XRD patterns of the of (e) the VO_2 and (f) the VN samples.

Fig.S4. XPS spectra of (a) survey scan, (b) V 2p region, and (c) O1s region for the VO_2 sample. XPS spectra of (d) survey scan, (e) V 2p region, and (f) N1s region for the VN sample.

Fig.S5 (a) CV curves of bare nickel foam (the red line) and $Ni_{1-x}V_xO_2$ composite electrode (the black line) measured at a scan rate of 30 mV s⁻¹ in 2.0 M KOH aqueous electrolyte. (b) CV curves of bare nickel foam (the red line) and Ni/VN composite electrode (the black line) measured at a scan rate of 30 mV s⁻¹ in 2.0 M KOH aqueous electrolyte.

Fig.S6 Long-term cycling stability of the (a) $Ni_{1-x}V_xO_2$ HHMS and (b) Ni/VN HHMS electrodes at a current density of 10 mA cm⁻² in 2 M KOH electrolyte in a three-electrode system.

Fig.S7 (a-d) SEM images of the VN HHMS sample. (e) EDS spectrum of the VN HHMS sample. (f) CV curves of the Ni/VN, VN and VN HHMS electrodes at a scan rate of 10 mV s⁻¹. (g) GCD curves of the Ni/VN, VN and VN HHMS electrodes at a current density of 0.5 A g⁻¹. (h) Variation of specific capacitances against current densities for the Ni/VN, VN and VN HHMS electrodes.

Serial no.	ASC	Electrolyte	Specific capacitance	Ref
1	rGO//NiO	1 M KOH	50 F g ⁻¹	1
2	CNFs//Ni ₃ S ₂ /CNFs	2 M KOH	56.6 F g ⁻¹	2
3	AC//Co ₃ O ₄ NSs-rGO	2 M KOH	46 F g ⁻¹	3
4	AC//Ni-Co oxide	1 M KOH	60 F g ⁻¹	4
5	GHCS//GHCS-MnO ₂	1 M Na ₂ SO ₄	24.5 F g ⁻¹	5
6	carbon//nickel oxide	6 M KOH	37 F g ⁻¹	6
7	GH//MnO2-NF	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	41.7 F g ⁻¹	7
8	AC//AC-MnO ₂	0.5 M Na ₂ SO ₄	23.1 F g ⁻¹	8
9	Ni/VN // Ni _{1-x} V _x O ₂	2 M KOH	65.7 F g ⁻¹	our work

Fig.S8 (a) Photograph showing a mobile phone charged by three ASCs in series. (b) Picture showing that three prepared device can drive a rotating motor.

Reference:

 Luan, F.; Wang, G.; Ling, Y.; Lu, X.; Wang, H.; Tong, Y.; Liu, X. X.; Li, Y. High Energy Density Aasymmetric Supercapacitors with a Nickel Oxide Nanoflake Cathode and a 3D Reduced Graphene Oxide Anode. *Nanoscale* 2013, *5*, 7984-7990.
Yu, W.; Lin, W.; Shao, X.; Hu, Z.; Li, R.; Yuan, D. High Performance Supercapacitor Based on Ni₃S₂/Carbon Nanofibers and Carbon Nanofibers Electrodes Derived from Bacterial Cellulose. *J. Power Sources* 2014, *272*, 137-143. [3] Yuan, C.; Zhang, L.; Hou, L.; Pang G.; Oh, W. H. One-Step Hydrothermal Fabrication of Strongly Coupled Co₃O₄ Nanosheets-Reduced Graphene Oxide for Electrochemical Capacitors. *RSC Adv.* **2014**, *4*, 14408-14413.

[4] Tang, C.; Tang, Z.; Gong, H. Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors. *J. Electrochem. Soc.* **2012**, *159*, A651-A656.

[5] Lei, Z.; Zhang, J.; Zhao, X. S. Ultrathin MnO₂ Nanofibers Grown on Graphitic Carbon Spheres as High-Performance Asymmetric Supercapacitor Electrodes. *J. Mater. Chem.* **2012**, *22*, 153-160.

[6] Wang, D. W.; Li, F.; Cheng, H. M. Hierarchical Porous Nickel Oxide and Carbon as Electrode Materials for Asymmetric Supercapacitor. *J. Power Sources* **2008**, *185*, 1563-1568.

[7] Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO₂. *ACS Appl. Mater. Interfaces* **2012**, *4*, 2801-2810.

[8] Wang, Y. T.; Lu, A. H.; Zhang, H. L.; Li, W. C. Synthesis of Nanostructured Mesoporous Manganese Oxides with Three-Dimensional Frameworks and Their Application in Supercapacitors. *J. Phys. Chem. C* **2011**, *115*, 5413-5421.