Supporting Information

A novel photoanode with high flexibility for fiber-shaped dye sensitized solar cells

Guicheng Liu^{1,2}, Xue Gao³, Hui Wang¹, A-Young Kim^{2,4}, Zhenxuan Zhao¹,

Joong Kee Lee², Dechun Zou^{*1,3}

^{1.} Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 30 Xueyuan Road, Haidian District, Beijing 100083, P.R.China

^{2.} Center for Energy Convergence Research, Green City Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14 gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea

^{3.} Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China

^{4.} Department of Material Science and Engineering, Korea University, Anam dong 5 ga, Seongbuk-gu, Seoul 02841, Republic of Korea

* Corresponding author: Prof. Dr. Zou,

Tel/ Fax: +86 010 8285 4789, E-mail: dczou@binn.cas.cn, dczou@pku.edu.cn

Fig. S1 Schematic of the preparation process and reactor of Ti/TiO₂ micron-cone array.

Fig. S2 Sketch map of the novel FDSSC based on Ti/TiO₂ micron-cone-nanowire array:

a) side and b) cross section.

Fig. S3 SEM images of Ti/TiO₂ micron-cone array prepared at 20V, 80° C and 10h.

Fig. S4 Section SEM of Ti/TiO₂ nanowire array.

Fig. S5 SEM images of the bended Ti/TiO_2 nanocrystalline layer.

Fig. S6 Current-voltage curves of the FDSSC with different bending degrees and times.