Supporting Information

Transitional Metal (Fe, Co, Ni) Encapsulated in Nitrogen-Doped

Carbon Nanotubes as Bifunctional Catalysts for Oxygen Electrode

Reactions

Yanyan Liu, Hongliang Jiang, Yihua Zhu,* Xiaoling Yang and Chunzhong Li*

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

E-mail: yhzhu@ecust.edu.cn (Prof. Y. H. Zhu), czli@ecust.edu.cn (Prof. C.Z. Li), Fax: +86 21 64250624

*Author(s) to whom correspondence should be addressed.

Fig. S1 Polarization curves of Co/N-CNTs catalysts in RDE tests (rotation rate:1500 rpm; pH 13; loading: 0.2 mg cm⁻²).

Fig. S2 Raman spectra for Co/N-CNTs samples carbonized under different temperatures.

Fig. S3 SEM images of (a.b) Co/N-CNTs-800, (c.d) Co/N-CNTs-900.

Fig. S4 Cyclic voltammograms of(a) Co/N-CNTs-700, (b) Pt/C, (c) Co/N-CNTs-800 and (d) Co/N-CNTs-900 at a scan rate of 50 mV s⁻¹.

Fig. S5 Cyclic voltammograms of (a) Fe/N-CNTs, (b) Ni/N-CNTs and (c) MWCNTs at a scan rate of 50 mV s⁻¹.

Fig. S6 (a) Linear sweep voltammograms and (b) K-L plots at different potentials for Fe/N-CNTs catalyst in O₂-saturated 0.1 M KOH solution.

Fig. S7 (a) Linear sweep voltammograms and (b) K-L plots at different potentials for Ni/N-CNTs catalyst in O₂-saturated 0.1 M KOH solution.

Fig. S8 SEM images of (a.b) Fe/N-CNTs, (c.d) Ni/N-CNTs.

Fig. S9 (a) XRD pattern of Fe/N-CNTs and the JCPDS cards #06-0696 for the corresponding metallic iron. (b) XRD pattern of Ni/N-CNTs and the JCPDS cards #65-2865 for the corresponding metallic nickel.

Fig. S10 EDX spectra and the content of C, N, Metal and O in (a) Fe/N-CNTs and (b) Ni/N-CNTs, the signal of Al is from the Al substrates.

Fig. S11 (a) N₂ adsorption/desorption isotherm and (b) the corresponding pore size distribution of the Fe/N-CNTs and Ni/N-CNTs.

Fig. S12 Raman spectra for Co/N-CNTs, Ni/N-CNTs and Fe/N-CNTs samples.

Fig. S13 I-t plots of Co/N-CNTs and Pt/C at 0.55 V (vs. RHE) with a rotation rate of 900 rpm in O₂-saturated 0.1 M KOH with the adding of methanol (1.0 M).

Fig. S14 I-t plots of Co/N-CNTs and Pt/C at 0.6 V.

Table 51 Elemental composition by XI 5 (at 70)						
Sample	C 1s	N 1s	O 1s	M 2p (M = Fe,Co,Ni)		
Co/N-CNTs	87.78	8.36	2.21	1.63		
Fe/N-CNTs	87.69	8.42	2.32	1.57		
Ni/N-CNTs	87.52	8.49	2.26	1.73		

Table S1 Elemental composition by XPS (at%)

Table S2. Comparison of bifunctional oxygen electrode activities of Co/N-CNTs-700 vis-à-vis some representative bifunctional oxygen catalysts recently reported.[a]

Catalysts	E _{ORR} (V) at J = -3 mA cm ⁻²	E _{OER} (V) at J = 10 mA cm ⁻²	Oxygen electrode ΔE (V) = E_{OER} E_{ORR}	Refs.
NiCo ₂ S ₄ @N/S-rGO	0.76	1.70	0.94	S 1
NiCo ₂ O ₄	0.75	1.72	0.97	S2
20 wt% Ir/C	0.69	1.61	0.92	S 3
NiCo ₂ O ₄ -A ₁	0.78	1.62	0.84	19
N-graphene/CNT	0.69	1.65	0.96	27
Co/N-C-800	0.74	1.60	0.86	S4
Pt/C BSCF/C=4:1	0.81	1.61	0.80	S5
Fe ₃ C@NG800-0.2	0.81	1.59	0.78	13
Ni _{0.4} Co _{2.56} O ₄	0.79	1.75	0.96	S 6
CoS ₂ (400)/N,S-GO	0.79	1.61	0.82	S7
Co/N-CNTs-700	0.84	1.62	0.78	This work

^[a]Here all the potential values were converted to vs. RHE for comparison.

References:

- S1. Q. Liu, J. Jin and J. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 5002.
- S2. C. Jin, F. Lu, X. Cao, Z. Yang and R. Yang, J. Mater. Chem. A, 2013, 1, 12170.
- S3. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612.
- S4. Z. Wen, S. Ci, Y. Hou and J. Chen, Angew. Chem., Int. Ed., 2014, 53, 6496.

- S5. J. Jin, F. Pan, L. Jiang, X. Fu, A. Liang, Z. Wei, J. Zhang and G. Sun, ACS Nano, 2014, 8, 3313.
- S6. T.N. Lambert, J.A. Vigil, S.E. White, D.J. Davis, S.J. Limmer, P.D. Burton, E.N. Coker, T.E. Beechem and M.T. Brumbach, *Chem. Commun.*, 2015, **51**, 9511.
- S7. P. Ganesan, M. Prabu, J. Sanetuntikul and S. Shanmugam, *ACS Catal.*, 2015, **6**, 3625.