Supporting Information ## Morphology and crystal phase evolution induced performance enhancement of MnO_2 grown on reduced graphene oxide for lithium ion batteries Yu Jiang,^a Zhong-Jie Jiang,^{a,*} Bohong Chen,^a Zhongqing Jiang,^b Si Cheng,^a Haibo Rong,^a Jianlin Huang^a and Meilin Liu^{a,c,*} ^a New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China. E-mail: zhongjiejiang1978@hotmail.com; esjiang@scut.edu.cn; Tel: +86-020-39381202. ^b Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, Zhejiang, China. ^c School of Materials Science & Engineering, GA Institute of Technology, Atlanta, GA30332, USA. E-mail: meilin.liu@mse.gatech.edu; Tel: +1-404-894-6114. **Figure S1.** (a) SEM image and (b) corresponding elemental Mn mapping of the MnO_2 -NR/rGO before cycling; (c) SEM image and (d) corresponding Elemental Mn mapping of the MnO_2 -NR/rGO after 300 cycles at the current density of 1.0 A g⁻¹.