Supporting Information

A General Non-CH₃NH₃X (X=I,Br)One Step Deposition of CH₃NH₃PbX₃ Perovskite for High Performance Solar Cells

Taiyang Zhang^a, Nanjie Guo^a, Ge Li^a, Xufang Qian^a, Liang Li^a and Yixin Zhao^{a*}

^a School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

Experimental:

Materials. The HX+PbI₂ (X=I and Br) precursor solution were synthesized by addition stoichiometric HI/HBr using 57 wt% hydriodide acid or 47 wt% hydrobromide acid into 1.0 M 99% PbI₂ DMF solution. The cloudy PbI₂ DMF solution turn to clear after addition of HI/Br aqueous solution. This HX+PbI₂ precursor solution can be stable for at least 1 day when stored in sealed bottle. A patterned fluorine-doped tin oxide (FTO) was first spray pyrolysis deposited with a 20 nm thick compact TiO₂ layer using 0.2 M Ti(IV) bis(ethyl acetoacetate)-diisopropoxide 1-butanol solution at 450 °C followed by one hour 450 °C annealing. A ~100 nm thick mesoporous TiO₂ layer was spin-coated by a 20 nm TiO₂ paste as previous reported.

MAPbI₂X (X=I, Br) perovskites deposition. A room temperature HI+PbI₂ or HBr+PbI₂ DMF precursor solution with addition of stoichiometric ratio was spin coated onto the patterned FTO at 4000 rpm for 20 sec under the CH₃NH₃ gas atmosphere (5mL CH₃NH₂ vapor was added in ~2L volumn spin coater chamber using a glass syringe). At around 10 sec, a colourless film was then turn to red brown during the spin process. The red brown film was then annealed at 100°C for 5 min. All the process was done under drybox with less than 20% humidity.

Device fabrication. The annealed perovskite films were then immediately spin coated with a layer of hole transport material (HTM) of 0.1 M spiro-MeOTAD, 0.035 M bis(trifluoromethane) sulfonimide lithium salt (Li-TFSi), and 0.12 M 4-*tert*-

butylpyridine (tBP) in chlorobenzene/acetonitrile (10:1, v/v) solution at 4000 rpm for 20 s. After aged in drybox for 1hr. a 120-nm-thick Ag contact layer was thermally evaporated.

Characterization. The crystal structures of the gas-solid reaction formed perovskite films were measured on Shimadzu XRD-6100 diffractometer with Cu K_{α} radiation. The morphologies of the HPbI₃ and MAPbI₃ films were characterized by a JSM-7800F Prime scanning electron microscope (SEM) with EDX. The absorption spectra of the HPbI₃ and MAPbI₃ films perovskite films were taken on an Cary-60 UV-vis spectrophotometer. The photocurrent density–voltage (J–V) curves of perovskite solar cells was measured by a Keithley 2401 source meter with 0.1V/sec scan rate under simulated AM 1.5G illumination (100 mW/cm²; Enlitech Class AAA Solar Simulator), the IPCE was measured on a QE-3011 system from Enlitech.

Figure S1. XRD patterns, UV-vis spectrums and J-V curves of perovskite films with different anneal time.

Figure S2. Typical large-scale SEM image of MAPbI₃ film prepared via the MA(g) +(PbI₂+ HI) reaction.

Figure S3. The XRD pattern of EAPbI₃ and MAPbBr3 perovskite prepared from the $EA(g) + PbI_2 + HI$ and $MA(g) + PbBr_2 + HBr$ reaction.

Figure S4. The typical *J*–*V* curve and dark *J*-*V* of a planar MAPbI₃ solar cell with the highest efficiency of 16.32% (J_{sc} =21.80 mA/cm², V_{oc} =1.04 V, FF=0.72) and 14.04% (J_{sc} =21. 69 mA/cm², V_{oc} =1.03 V, FF=0.63) under reverse/backward voltage scan at simulated one-sun illumination.

Figure S5. (A,B) The scan rate dependent J-V curves of the MAPbI3 perovskite solar cells. (C,D) The ageing effect on MAPbI3 perovskite solar cells using 1 hr and 16 hr aged HTM.

Figure S6. The PCE histogram of the MAPbI₂Br and MAPbI₃ perovskite solar cells based on MA+(PbI₂+HBr) and MA+(PbI₂+HI) reactions.

Table S1

Device parameters of MAPbI₃ and MAPbBr₂I perovskite solar cells. The best efficiency device's parameters and the value with deviations of each device parameters are given in parentheses (30 devices for each type)

Perovskite Type	$J_{\rm sc}$ (mA/cm ²)	$V_{\rm oc}\left({ m V} ight)$	FF	η (%)
MAPbI ₃	21.80	1.04	0.72	16.32
	(20.95±0.89)	(1.00±0.04)	(0.71±0.03)	(15.08±0.74)
MAPbI ₂ Br	14.40	1.15	0.73	12.09
	14.35±0.70)	(1.09±0.05)	(0.70±0.03)	(11.18±0.66)