Electronic Supplementary Information (ESI):

Grafting Sulfonic and Amine Functional Groups on 3D Graphene for

Improved Capacitive Deionization

Peiying Liu, Hui Wang, Tingting Yan, Jianping Zhang, Liyi Shi, Dengsong Zhang*

Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China. Fax: 86 21 66136079; E-mail: dszhang@shu.edu.cn

Fig. S1 CV curves of 3DGR, 3DNGR and 3DSGR at different scan rates.

Fig. S2 (a) SAC and CDI Ragone plots for the capacitor 3DGR-3DGR in a NaCl solution with different initial concentrations at a flow rate of 40 mL min⁻¹ at 1.4 V

Fig. S3 (a) Plots of NaCl solution conductivity *vs*. time and (b) the CDI Ragone plots for the capacitor 3DGR-3DGR with different voltage at a flow rate of 40 mL min⁻¹ in a 100 mg L⁻¹ NaCl solution.

Fig. S4 (a) Plots of NaCl solution conductivity *vs.* time and (b) the CDI Ragone plots for the capacitor 3DGR-3DGR with different flow rate in a 100 mg L^{-1} NaCl solution at 1.4 V.

Electrode material	Applied voltage (V)	Initial NaCl	Salt adsorption	
		concentration	capacity	Ref.
		(mg L ⁻¹)	(mg g ⁻¹)	
Graphene	1.2	50	1.85	1
Graphene/mesoporous carbon	2	40	0.73	2
Graphene nanosheets	2.0	250	8.6	3
GAC ^a	1.2	500	2.92	4
Carbon nanofibers	1.2	500	2.21	5
Hollow carbon	1.2	40	1.91	6
RGO-RF ^b	2.0	65	3.229	7
CNTs-RGO ^c	1.2	500	1.4	8
Graphene/carbon Nanotube	2	30	1.41	9
3DMGA ^d	1.6	50	3.9	10
3DNGR-3DSGR	1.2	100	6.4	This work
3DNGR-3DSGR	1.4	100	9.72	This work
3DNGR-3DSGR	1.4	500	13.72	This work

Table S1 Comparison of the salt adsorption capacity among various carbon electrode materials from the literatures

a: reduced graphene oxide (RGO) and activated carbon (AC) composites; b: reduced graphite oxidate-resol like material; c: carbon nanotubes (CNTs) and reduced graphene oxide (RGO); d: three-dimensional macroporous graphene architectures.

Electrode material	Applied voltage (V)	Initial NaCl concentration (mg L ⁻¹)	Charge efficiency	Ref.
Activated carbon	1.2	500	0.19	4
GAC ^a	1.2	500	0.24	4
CNTs	1.6	500	0.32	8
CNTs-RGO ^b	1.6	500	0.40	0
CFC ^c	1.4	250	0.41	11
CFC-SRGO ^d	1.4	250	0.46	
Carbon nanorods	1.2	500	0.56	12
Carbon	1.2	500	0.72	13
nanofibers				
3DNGR-3DSGR	1.4	500	0.85	This work

Table S2 Comparison of the charge efficiency among various carbon electrode materials from the literatures

a: reduced graphene oxide (RGO) and activated carbon (AC) composites; b: carbon nanotubes (CNTs) and reduced graphene oxide (RGO); c: carbon fibre cloth (CFC); d: carbon fibre cloth (CFC) and sulphonated reduced graphene oxide (SRGO) composites.

References:

- 1 H. B. Li, T. Lu, L. K. Pan, Y. P. Zhang and Z. Sun, J. Mater. Chem. , 2009, 19, 6773-6779.
- 2 D. S. Zhang, X. R. Wen, L. Y. Shi, T. T. Yan and J. P. Zhang, Nanoscale, 2012, 4, 5440-5446.
- 3 B. P. Jia and L. D. Zou, Carbon, 2012, 50, 2315-2321.
- 4 H. B. Li, L. K. Pan, C. Y. Nie, Y. Liu and Z. Sun, J. Mater. Chem., 2012, 22, 15556-15561.
- 5 A. G. El-Deen, N. A. M. Barakat, K. A. Khalil and H. Y. Kim, J. Mater. Chem. A, 2013, 1, 11001-11010.
- 6 A. G. El-Deen, N. A. M. Barakat, K. A. Khalil and H. Y. Kim, New J. Chem., 2014, 38, 198-205.
- 7 Z. Wang, B. J. Dou, L. Zheng, G. N. Zhang, Z. H. Liu and Z. P. Hao, *Desalination*, 2012, **299**, 96-102.
- 8 H. B. Li, S. Liang, J. Li and L. J. He, J. Mater. Chem. A, 2013, 1, 6335-6341.
- 9 D. S. Zhang, T. T. Yan, L. Y. Shi, Z. Peng, X. R. Wen and J. P. Zhang, *J. Mater. Chem.*, 2012, 22, 14696-14704.
- 10 H. Wang, D. S. Zhang, T. T. Yan, X. R. Wen, J. P. Zhang, L. Y. Shi and Q. D. Zhong, *J. Mater. Chem. A*, 2013, **1**, 11778-11789.
- 11 H. Li, F. Zaviska, S. Liang, J. Li, L. He and H. Y. Yang, *Journal of Materials Chemistry A*, 2014, **2**, 3484-3491.
- 12 Y. Liu, L. Pan, X. Xu, T. Lu, Z. Sun and D. H. C. Chua, J. Mater. Chem. A, 2014, 2, 20966-20972.
- 13 Y. Liu, T. Lu, Z. Sun, D. H. C. Chua and L. Pan, J. Mater. Chem. A, 2015, 3, 8693-8700.