Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Synthesis, Characterization and Properties of Nitrogen-rich compound based on

Cyanuric Acid: A Promising Design in the Development of New Energetic Materials

Qiangqiang Liu^{a,b}, Bo Jin^b*, Rufang Peng^{ab}*, Zhicheng Guo^c, Jun Zhao^b, Qingchun Zhang^b, Yu Shang^b

^a Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621010, China

^b State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, China

^cSchool of Nation Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China

Table of Contents

Table S1 Atomic coordinates and equivalent isotropic displacement parameters for 2	S3
Table S2 Bond lengths and angles for 2.	S4
Table S3 Anisotropic displacement parameters for 2.	S5
Table S4 Hydrogen coordinates and isotropic displacement parameters for 2	S5
Table S5 Torsion angles for 2.	S5
Table S6 Hydrogen bonds for 2.	S6
Table S7 Atomic coordinates and B_{iso}/B_{eq} for 4.	S7
Table S8 Atomic coordinates and Biso involving hydrogen atoms for 4.	S8
Table S9 Anisotropic displacement parameters for 4.	
Table S10 Bond lengths for 4.	S10
Table S11 Bond angles for 4	S11
Table S12 Torsion Angles for 4.	S12
Table S13 Hydrogen bonds for 4.	S13
Table S14 Atomic coordinates and equivalent isotropic displacement parameters for $9 \cdot H_2O$	S14
Table S15 Bond lengths and angles for $9 \cdot H_2 O$	S15
Table S16 Anisotropic displacement parameters for 9·H2O.	S16
Table S17 Hydrogen coordinates and isotropic displacement parameters for 9·H ₂ O.	S16
Table S18 Torsion angles for 9·H2O	S17
Table S19 Hydrogen bonds for $9 \cdot H_2 O$	S17
Table S20 Crystal data and structure refinement for $CA \cdot H_2O$	S18
Table S21 Atomic coordinates and equivalent isotropic displacement parameters for $CA \cdot H_2O$	S19
Table S22 Bond lengths and angles for CA·H ₂ O	S19
Table S22 Anisotropic displacement parameters for CA·H ₂ O.	S20
Table S23 Hydrogen coordinates and isotropic displacement parameters for CA·H ₂ O	S20
Table S24 Torsion angles for CA·H2O.	S20
Computational Details(Isodesmic Reactions)	S21
Fig. S2 ¹³ C NMR spectra of salt 1	S22
Fig. S3 ¹³ C NMR spectra of salt 6	S22

	Х	У	Z	U(eq)
O(1)	3478(1)	7297(1)	3846(1)	14(1)
O(2)	5505(1)	1613(1)	2610(1)	15(1)
O(3)	1831(1)	1313(1)	4996(1)	13(1)
N(1)	2568(1)	4373(1)	4456(1)	11(1)
N(2)	4487(1)	4477(1)	3212(1)	11(1)
N(3)	3715(1)	1449(1)	3878(1)	10(1)
C(1)	3491(1)	5454(1)	3852(1)	10(1)
C(2)	4629(1)	2456(1)	3197(1)	10(1)
C(3)	2663(1)	2378(1)	4464(1)	9(1)
N(4)	6058(1)	7528(1)	536(1)	12(1)
N(5)	6303(1)	7416(1)	2070(1)	13(1)

Table S1. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **2**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

O(1)-C(1)	1.2388(12)
O(2)-C(2)	1.2306(11)
O(3)-C(3)	1.2477(11)
N(1)-C(3)	1.3437(12)
N(1)-C(1)	1.3528(11)
N(2)-C(2)	1.3657(12)
N(2)-C(1)	1.3903(11)
N(2)-H(2)	0.924(14)
N(3)-C(2)	1.3651(11)
N(3)-C(3)	1.3872(11)
N(3)-H(3)	0.882(16)
N(4)-N(5)	1.4573(11)
N(4)-H(4A)	0.904(14)
N(4)-H(4B)	0.910(14)
N(4)-H(4C)	0.931(14)
N(5)-H(5A)	0.870(14)
N(5)-H(5B)	0.886(13)
C(3)-N(1)-C(1)	119.37(7)
C(2)-N(2)-C(1)	123.44(7)
C(2)-N(2)-H(2)	120.2(9)
C(1)-N(2)-H(2)	116.3(9)
C(2)-N(3)-C(3)	123.19(8)
C(2)-N(3)-H(3)	118.5(7)
C(3)-N(3)-H(3)	118.0(7)
O(1)-C(1)-N(1)	122.18(8)
O(1)-C(1)-N(2)	118.46(8)
N(1)-C(1)-N(2)	119.35(8)
O(2)-C(2)-N(3)	122.82(8)
O(2)-C(2)-N(2)	122.64(8)
N(3)-C(2)-N(2)	114.53(7)
O(3)-C(3)-N(1)	121.90(8)
O(3)-C(3)-N(3)	118.16(8)
N(1)-C(3)-N(3)	119.94(7)
N(5)-N(4)-H(4A)	108.3(8)
N(5)-N(4)-H(4B)	108.0(8)
H(4A)-N(4)-H(4B)	107.7(11)
N(5)-N(4)-H(4C)	112.7(8)
H(4A)-N(4)-H(4C)	111.2(11)
H(4B)-N(4)-H(4C)	108.9(12)
N(4)-N(5)-H(5A)	104.7(8)
N(4)-N(5)-H(5B)	105.6(9)
H(5A)-N(5)-H(5B)	106.4(12)

Table S2.	Bond lengths [Å] and angles [°] for 2.

	U11	U22	U33	U23	U13	U12
O(1)	18(1)	7(1)	17(1)	0(1)	4(1)	0(1)
O(2)	14(1)	12(1)	21(1)	-2(1)	10(1)	0(1)
O(3)	12(1)	10(1)	17(1)	1(1)	6(1)	-1(1)
N(1)	12(1)	8(1)	13(1)	-1(1)	4(1)	1(1)
N(2)	11(1)	8(1)	13(1)	1(1)	5(1)	-1(1)
N(3)	11(1)	6(1)	14(1)	0(1)	4(1)	0(1)
C(1)	10(1)	9(1)	9(1)	0(1)	0(1)	0(1)
C(2)	10(1)	10(1)	11(1)	-1(1)	1(1)	0(1)
C(3)	8(1)	11(1)	9(1)	0(1)	1(1)	0(1)
N(4)	12(1)	9(1)	14(1)	0(1)	6(1)	0(1)
N(5)	14(1)	12(1)	13(1)	0(1)	5(1)	1(1)

Table S3. Anisotropic displacement parameters (Å² x 10³) for **2.** The anisotropic displacement factor exponent takes the form: $-2 \pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

Table S4. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å 2 x 10³) for **2**.

	х	У	Z	U(eq)
H(4A)	5099(16)	7426(19)	196(13)	20(3)
H(4B)	6491(14)	6460(20)	220(14)	21(3)
H(5A)	6010(14)	8560(20)	2330(13)	19(3)
H(3)	3732(12)	140(20)	3870(12)	21(3)
H(5B)	7252(15)	7399(19)	2357(14)	20(3)
H(4C)	6431(14)	8680(20)	217(14)	23(3)
H(2)	5099(14)	5280(20)	2820(13)	29(3)

Table S5.Torsion angles [°] for 2.

$\begin{array}{cccc} C(3)-N(1)-C(1)-O(1) & -178.08(7) \\ C(3)-N(1)-C(1)-N(2) & 2.08(11) \\ C(2)-N(2)-C(1)-O(1) & 177.76(7) \\ C(2)-N(2)-C(1)-N(1) & -2.40(11) \\ C(3)-N(3)-C(2)-O(2) & -175.73(8) \\ C(3)-N(3)-C(2)-N(2) & 3.95(11) \\ C(1)-N(2)-C(2)-O(2) & 179.09(7) \\ C(1)-N(2)-C(2)-N(3) & -0.60(11) \\ C(1)-N(1)-C(3)-O(3) & -179.41(7) \\ C(1)-N(1)-C(3)-N(3) & 1.11(11) \\ C(2)-N(3)-C(3)-O(3) & 176.13(7) \\ C(2)-N(3)-C(3)-N(1) & -4.38(11) \\ \end{array}$		
$\begin{array}{cccc} C(3)-N(1)-C(1)-N(2) & 2.08(11) \\ C(2)-N(2)-C(1)-O(1) & 177.76(7) \\ C(2)-N(2)-C(1)-N(1) & -2.40(11) \\ C(3)-N(3)-C(2)-O(2) & -175.73(8) \\ C(3)-N(3)-C(2)-N(2) & 3.95(11) \\ C(1)-N(2)-C(2)-O(2) & 179.09(7) \\ C(1)-N(2)-C(2)-N(3) & -0.60(11) \\ C(1)-N(1)-C(3)-O(3) & -179.41(7) \\ C(1)-N(1)-C(3)-N(3) & 1.11(11) \\ C(2)-N(3)-C(3)-O(3) & 176.13(7) \\ C(2)-N(3)-C(3)-N(1) & -4.38(11) \\ \end{array}$	C(3)-N(1)-C(1)-O(1)	-178.08(7)
$\begin{array}{cccc} C(2)-N(2)-C(1)-O(1) & 177.76(7) \\ C(2)-N(2)-C(1)-N(1) & -2.40(11) \\ C(3)-N(3)-C(2)-O(2) & -175.73(8) \\ C(3)-N(3)-C(2)-N(2) & 3.95(11) \\ C(1)-N(2)-C(2)-O(2) & 179.09(7) \\ C(1)-N(2)-C(2)-N(3) & -0.60(11) \\ C(1)-N(1)-C(3)-O(3) & -179.41(7) \\ C(1)-N(1)-C(3)-N(3) & 1.11(11) \\ C(2)-N(3)-C(3)-O(3) & 176.13(7) \\ C(2)-N(3)-C(3)-N(1) & -4.38(11) \\ \end{array}$	C(3)-N(1)-C(1)-N(2)	2.08(11)
$\begin{array}{cccc} C(2)-N(2)-C(1)-N(1) & -2.40(11) \\ C(3)-N(3)-C(2)-O(2) & -175.73(8) \\ C(3)-N(3)-C(2)-N(2) & 3.95(11) \\ C(1)-N(2)-C(2)-O(2) & 179.09(7) \\ C(1)-N(2)-C(2)-N(3) & -0.60(11) \\ C(1)-N(1)-C(3)-O(3) & -179.41(7) \\ C(1)-N(1)-C(3)-N(3) & 1.11(11) \\ C(2)-N(3)-C(3)-O(3) & 176.13(7) \\ C(2)-N(3)-C(3)-N(1) & -4.38(11) \end{array}$	C(2)-N(2)-C(1)-O(1)	177.76(7)
C(3)-N(3)-C(2)-O(2) $-175.73(8)$ $C(3)-N(3)-C(2)-N(2)$ $3.95(11)$ $C(1)-N(2)-C(2)-O(2)$ $179.09(7)$ $C(1)-N(2)-C(2)-N(3)$ $-0.60(11)$ $C(1)-N(1)-C(3)-O(3)$ $-179.41(7)$ $C(1)-N(1)-C(3)-N(3)$ $1.11(11)$ $C(2)-N(3)-C(3)-O(3)$ $176.13(7)$ $C(2)-N(3)-C(3)-N(1)$ $-4.38(11)$	C(2)-N(2)-C(1)-N(1)	-2.40(11)
C(3)-N(3)-C(2)-N(2) $3.95(11)$ $C(1)-N(2)-C(2)-O(2)$ $179.09(7)$ $C(1)-N(2)-C(2)-N(3)$ $-0.60(11)$ $C(1)-N(1)-C(3)-O(3)$ $-179.41(7)$ $C(1)-N(1)-C(3)-N(3)$ $1.11(11)$ $C(2)-N(3)-C(3)-O(3)$ $176.13(7)$ $C(2)-N(3)-C(3)-N(1)$ $-4.38(11)$	C(3)-N(3)-C(2)-O(2)	-175.73(8)
C(1)-N(2)-C(2)-O(2)179.09(7)C(1)-N(2)-C(2)-N(3)-0.60(11)C(1)-N(1)-C(3)-O(3)-179.41(7)C(1)-N(1)-C(3)-N(3)1.11(11)C(2)-N(3)-C(3)-O(3)176.13(7)C(2)-N(3)-C(3)-N(1)-4.38(11)	C(3)-N(3)-C(2)-N(2)	3.95(11)
C(1)-N(2)-C(2)-N(3)-0.60(11)C(1)-N(1)-C(3)-O(3)-179.41(7)C(1)-N(1)-C(3)-N(3)1.11(11)C(2)-N(3)-C(3)-O(3)176.13(7)C(2)-N(3)-C(3)-N(1)-4.38(11)	C(1)-N(2)-C(2)-O(2)	179.09(7)
C(1)-N(1)-C(3)-O(3)-179.41(7)C(1)-N(1)-C(3)-N(3)1.11(11)C(2)-N(3)-C(3)-O(3)176.13(7)C(2)-N(3)-C(3)-N(1)-4.38(11)	C(1)-N(2)-C(2)-N(3)	-0.60(11)
C(1)-N(1)-C(3)-N(3)1.11(11)C(2)-N(3)-C(3)-O(3)176.13(7)C(2)-N(3)-C(3)-N(1)-4.38(11)	C(1)-N(1)-C(3)-O(3)	-179.41(7)
C(2)-N(3)-C(3)-O(3) 176.13(7) C(2)-N(3)-C(3)-N(1) -4.38(11)	C(1)-N(1)-C(3)-N(3)	1.11(11)
C(2)-N(3)-C(3)-N(1) -4.38(11)	C(2)-N(3)-C(3)-O(3)	176.13(7)
	C(2)-N(3)-C(3)-N(1)	-4.38(11)

 Table S6. Hydrogen bonds for 2 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2)N(5)	0.924(14)	2.053(15)	2.9696(11)	171.1(13)
N(4)-H(4C)N(1)#1	0.931(14)	1.928(14)	2.8389(11)	165.6(12)
N(5)-H(5B)O(2)#2	0.886(13)	2.181(14)	3.0228(11)	158.5(12)
N(3)-H(3)O(1)#3	0.882(16)	1.924(16)	2.7996(11)	171.9(11)
N(5)-H(5A)O(2)#4	0.870(14)	2.137(14)	2.9924(11)	167.4(12)
N(4)-H(4B)O(3)#5	0.910(14)	1.910(14)	2.7609(11)	155.0(12)
N(4)-H(4A)O(3)#6	0.904(14)	1.948(14)	2.8003(11)	156.6(12)

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+3/2,z-1/2 #2 -x+3/2,y+1/2,-z+1/2 #3 x,y-1,z #4 x,y+1,z #5 x+1/2,-y+1/2,z-1/2 #6 -x+1/2,y+1/2,-z+1/2

	X	V	Z	Bea
01	0.34016(9)	0.73676(5)	0.87607(5)	1.097(8)
O2	0.21415(10)	1.09977(5)	1.06416(5)	1.343(9)
O3	0.28497(9)	1.09993(5)	0.67724(5)	1.147(8)
O4	0.30419(10)	0.80462(5)	0.56675(5)	1.236(9)
O5	0.21310(10)	1.16821(5)	0.36898(5)	1.403(9)
O6	0.24595(9)	0.80740(5)	0.18952(5)	1.090(8)
N1	0.25025(10)	1.10938(5)	0.87078(5)	0.966(9)
N2	0.27421(10)	0.91860(5)	0.97146(5)	0.916(9)
N3	0.30553(10)	0.91903(5)	0.77596(5)	0.916(9)
N4	0.25472(10)	0.98629(5)	0.46999(5)	0.880(8)
N5	0.22361(10)	0.98826(5)	0.27868(5)	0.898(8)
N6	0.26704(9)	0.79702(5)	0.37910(5)	0.854(8)
N7	-0.08173(10)	0.41294(6)	0.82308(6)	1.171(10)
N8	0.07826(10)	0.56838(5)	0.86693(6)	0.975(9)
N9	-0.08694(10)	0.65435(6)	0.83248(6)	1.144(9)
N10	0.22411(10)	0.36464(6)	0.89802(6)	1.060(9)
N11	0.38617(11)	0.40781(6)	0.93815(6)	1.285(10)
N12	0.21910(10)	0.56203(6)	0.58994(6)	1.086(9)
N13	0.50431(10)	0.45161(6)	0.66600(6)	1.082(9)
N14	0.58168(10)	0.55629(6)	0.68928(6)	1.170(10)
N15	0.28102(10)	0.34834(6)	0.60146(6)	1.039(9)
N16	0.10129(10)	0.34725(6)	0.55329(6)	1.012(9)
C1	0.30869(10)	0.85045(6)	0.87462(6)	0.804(9)
C2	0.24461(11)	1.04648(6)	0.97082(6)	0.870(9)
C3	0.27913(10)	1.04702(6)	0.77269(6)	0.821(9)
C4	0.27648(10)	0.85844(6)	0.47403(6)	0.823(9)
C5	0.22950(11)	1.05539(6)	0.37244(6)	0.875(9)
C6	0.24546(10)	0.86082(6)	0.28051(6)	0.781(9)

Table S7. Atomic coordinates and B_{iso}/B_{eq} for 4.

 $\mathsf{B}_{\mathsf{eq}} = 8/3 \ \pi^2 (\mathsf{U}_{11}(\mathsf{aa}^*)^2 + \mathsf{U}_{22}(\mathsf{bb}^*)^2 + \mathsf{U}_{33}(\mathsf{cc}^*)^2 + 2\mathsf{U}_{12}(\mathsf{aa}^*\mathsf{bb}^*)\mathsf{cos}\ \gamma + 2\mathsf{U}_{13}(\mathsf{aa}^*\mathsf{cc}^*)\mathsf{cos}\ \beta + 2\mathsf{U}_{23}(\mathsf{bb}^*\mathsf{cc}^*)\mathsf{cos}\ \alpha)$

	Х	У	Z	B _{iso}
H1	0.268(2)	0.8839(13)	1.0387(12)	2.0(3)
H2	0.323(2)	0.8821(13)	0.7120(12)	2.0(3)
H3	0.269(2)	1.0217(13)	0.5341(12)	2.2(3)
H4	0.214(2)	1.0244(13)	0.2119(12)	2.0(3)
H5	-0.091(2)	0.3324(14)	0.8285(12)	2.3(3)
H6	-0.1778(19)	0.4748(12)	0.7997(11)	1.5(2)
H7	0.1856(18)	0.5898(11)	0.8873(10)	1.0(2)
H8	-0.121(2)	0.7186(13)	0.8817(12)	2.0(3)
H9	-0.047(2)	0.6889(13)	0.7606(12)	2.0(3)
H10	0.234(2)	0.2827(13)	0.8871(12)	1.9(2)
H11	0.389(2)	0.3831(12)	1.0135(12)	1.8(2)
H12	0.503(2)	0.3671(14)	0.8993(12)	2.2(3)
H13	0.267(2)	0.6337(12)	0.5875(11)	1.5(2)
H14	0.112(2)	0.5608(12)	0.5580(11)	1.7(2)
H15	0.590(2)	0.3832(14)	0.6596(12)	2.1(3)
H16	0.597(2)	0.6042(14)	0.6253(13)	2.4(3)
H17	0.499(2)	0.5995(13)	0.7435(12)	1.7(2)
H18	0.338(2)	0.2793(13)	0.6385(12)	2.0(3)
H19	0.015(2)	0.3230(13)	0.6079(12)	2.1(3)
H20	0.133(2)	0.2867(13)	0.4998(12)	1.7(2)

Table S8. Atomic coordinates and B_{iSO} involving hydrogen atoms for 4.

Table S9. Anisotropic displacement parameters for **4**. The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$.

	U11	U22	U33	U12	U13	U23
01	0.0222(3)	0.00643(19)	0.0138(2)	-0.00364(17)	-0.00357(19)	-0.00003(16)
O2	0.0316(3)	0.0094(2)	0.0093(2)	-0.0014(2)	-0.0035(2)	-0.00187(17)
O3	0.0252(3)	0.0098(2)	0.0093(2)	-0.00457(18)	-0.00344(19)	0.00208(17)
O4	0.0284(3)	0.0108(2)	0.0092(2)	-0.00507(19)	-0.0061(2)	0.00179(17)
O5	0.0325(3)	0.0071(2)	0.0138(3)	-0.00230(19)	-0.0054(2)	-0.00044(17)
O6	0.0231(3)	0.0106(2)	0.0095(2)	-0.00573(18)	-0.00430(18)	-0.00140(16)
N1	0.0201(3)	0.0074(2)	0.0093(3)	-0.00234(19)	-0.0029(2)	-0.00001(18)
N2	0.0197(3)	0.0069(2)	0.0084(3)	-0.00268(19)	-0.0029(2)	0.00055(18)
N3	0.0203(3)	0.0070(2)	0.0080(3)	-0.00322(19)	-0.0027(2)	-0.00046(18)
N4	0.0177(3)	0.0075(2)	0.0086(3)	-0.00248(19)	-0.00280(19)	-0.00066(18)
N5	0.0185(3)	0.0073(2)	0.0088(3)	-0.00219(18)	-0.0042(2)	0.00015(18)
N6	0.0158(2)	0.0084(2)	0.0089(3)	-0.00316(18)	-0.00316(19)	0.00020(18)
N7	0.0163(3)	0.0104(2)	0.0196(3)	-0.0049(2)	-0.0051(2)	-0.0016(2)
N8	0.0153(2)	0.0066(2)	0.0162(3)	-0.00247(18)	-0.0051(2)	0.00029(19)
N9	0.0185(3)	0.0089(2)	0.0157(3)	0.00046(19)	-0.0053(2)	-0.0002(2)
N10	0.0170(3)	0.0080(2)	0.0158(3)	-0.00143(19)	-0.0053(2)	-0.00002(19)
N11	0.0161(3)	0.0156(3)	0.0179(3)	-0.0021(2)	-0.0067(2)	-0.0000(2)
N12	0.0182(3)	0.0085(2)	0.0158(3)	-0.00276(19)	-0.0071(2)	0.00134(19)
N13	0.0138(2)	0.0099(2)	0.0182(3)	-0.00169(19)	-0.0050(2)	-0.0020(2)
N14	0.0169(3)	0.0128(3)	0.0163(3)	-0.0052(2)	-0.0035(2)	-0.0029(2)
N15	0.0151(2)	0.0080(2)	0.0177(3)	-0.00263(18)	-0.0065(2)	0.00099(19)
N16	0.0152(3)	0.0111(2)	0.0136(3)	-0.00403(19)	-0.0047(2)	-0.00042(19)
C1	0.0135(3)	0.0077(2)	0.0101(3)	-0.00311(19)	-0.0026(2)	-0.00005(19)
C2	0.0157(3)	0.0073(2)	0.0101(3)	-0.0015(2)	-0.0028(2)	-0.0004(2)
C3	0.0143(3)	0.0074(2)	0.0099(3)	-0.00247(19)	-0.0026(2)	0.0003(2)
C4	0.0137(3)	0.0088(2)	0.0092(3)	-0.0027(2)	-0.0021(2)	0.0001(2)
C5	0.0154(3)	0.0083(3)	0.0095(3)	-0.0015(2)	-0.0024(2)	-0.0004(2)
C6	0.0119(2)	0.0084(2)	0.0099(3)	-0.00259(19)	-0.0026(2)	-0.0003(2)
C7	0.0136(3)	0.0083(2)	0.0088(3)	-0.00304(19)	-0.0008(2)	-0.00026(19)
C8	0.0129(3)	0.0090(2)	0.0083(3)	-0.00228(19)	-0.0009(2)	-0.00019(19)

Table S10.	Bond	lengths	[Å]	for 4 .

	distance		distance
O(1)-C(1)	1.2296(9)	N(10)-N(11)	1.4135(11)
O(3)-C(3)	1.2495(9)	N(12)-C(8)	1.3204(9)
O(5)-C(5)	1.2266(9)	N(13)-C(8)	1.3379(11)
N(1)-C(2)	1.3475(9)	N(15)-C(8)	1.3388(11)
N(2)-C(1)	1.3625(10)	N(2)-H(1)	0.868(14)
N(3)-C(1)	1.3656(9)	N(4)-H(3)	0.890(15)
N(4)-C(4)	1.3880(9)	N(7)-H(5)	0.902(16)
N(5)-C(5)	1.3659(10)	N(8)-H(7)	0.867(13)
N(6)-C(4)	1.3482(10)	N(9)-H(9)	0.944(14)
N(7)-C(7)	1.3314(11)	N(11)-H(11)	0.924(14)
N(8)-C(7)_	1.3303(10)	N(12)-H(13)	0.906(14)
N(10)-C(7)	1.3316(9)	N(13)-H(15)	0.853(14)
N(13)-N(14)	1.4051(11)	N(14)-H(17)	0.876(13)
N(15)-N(16)	1.4064(11)	N(16)-H(19)	0.879(14)
O(2)-C(2))	1.2439(10)	N(3)-H(2)	0.856(15)
O(4)-C(4)	1.2454(9)	N(5)-H(4)	0.875(14)
O(6)-C(6)	1.2458(10)	N(7)-H(6)	0.906(12)
N(1)-C(3)	1.3433(10)	N(9)-H(8)	0.909(14)
N(2)-C(2)	1.3847(9)	N(10)-H(10)	0.906(14)
N(3)-C(3)	1.3870(9)	N(11)-H(12)	0.899(13)
N(4)-C(5)	1.3691(9)	N(12)-H(14)	0.860(15)
N(5)-C(6)	1.3834(9)	N(14)-H(16)	0.911(15)
N(6)-C(6)	1.3482(9)	N(15)-H(18)	0.908(13)
N(8)-N(9)	1.4077(9)	N(16)-H(20)	0.912(14)

	Angle		Angle
C(2)-N(1)-C(3)	119.34(6)	C(1)-N(2)-H(1)	121.6(10)
C(1)-N(3)-C(3)	123.55(6)	C(1)-N(3)-H(2)	119.2(10)
C(5)-N(5)-C(6)	123.29(6)	C(4)-N(4)-H(3)	115.9(9)
N(9)-N(8)-C(7)	118.38(7)	C(5)-N(5)-H(4)	120.6(10)
N(14)-N(13)-C(8)	123.84(6)	C(7)-N(7)-H(5)	118.9(10)
O(1)-C(1)-N(2)	122.75(7)	H(5)-N(7)-H(6)	125.2(13)
N(2)-C(1)-N(3)	114.35(6)	C(7)-N(8)-H(7)	118.6(7)
O(2)-C(2)-N(2)	118.14(6)	N(8)-N(9)-H(9)	109.9(8)
O(3)-C(3)-N(1)	122.44(6)	N(11)-N(10)-H(10)	119.9(9)
N(1)-C(3)-N(3)	119.52(6)	N(10)-N(11)-H(11)	108.2(9)
O(4)-C(4)-N(6)	122.38(6)	H(11)-N(11)-H(12)	106.1(12)
O(5)-C(5)-N(4)	123.10(7)	C(8)-N(12)-H(14)	119.5(9)
N(4)-C(5)-N(5)	114.41(6)	N(14)-N(13)-H(15)	116.5(11)
O(6)-C(6)-N(6)	121.39(6)	N(13)-N(14)-H(16)	110.8(11)
N(7)-C(7)-N(8)	119.70(6)	H(16)-N(14)-H(17)	110.0(12)
N(8)-C(7)-N(10)	120.09(7)	C(8)-N(15)-H(18)	119.9(10)
N(12)-C(8)-N(15)	120.88(7)	N(15)-N(16)-H(20)	106.7(9)
C(1)-N(2)-C(2)	123.30(6)	C(2)-N(2)-H(1)	115.2(10)
C(4)-N(4)-C(5)	123.36(6)	C(3)-N(3)-H(2)	117.2(10)
C(4)-N(6)-C(6)	119.12(6)	C(5)-N(4)-H(3)	120.5(9)
N(11)-N(10)-C(7)	117.70(7)	C(6)-N(5)-H(4)	115.9(10)
N(16)-N(15)-C(8)	119.28(6)	C(7)-N(7)-H(6)	115.5(9)
O(1)-C(1)-N(3)	122.90(7)	N(9)-N(8)-H(7)	123.0(7)
O(2)-C(2)-N(1)	121.99(6)	N(8)-N(9)-H(8)	109.7(9)
N(1)-C(2)-N(2)	119.87(6)	H(8)-N(9)-H(9)	105.8(12)
O(3)-C(3)-N(3)	118.03(6)	C(7)-N(10)-H(10)	121.8(9)
O(4)-C(4)-N(4)	117.93(7)	N(10)-N(11)-H(12)	106.7(11)
N(4)-C(4)-N(6)	119.69(6)	C(8)-N(12)-H(13)	120.8(8)
O(5)-C(5)-N(5)	122.49(7)	H(13)-N(12)-H(14)	118.1(12)
O(6)-C(6)-N(5)	118.54(6)	C(8)-N(13)-H(15)	116.1(11)
N(5)-C(6)-N(6)	120.06(6)	N(13)-N(14)-H(17)	109.9(10)
N(7)-C(7)-N(10)	120.20(7)	N(16)-N(15)-H(18)	118.5(10)
N(12)-C(8)-N(13)	122.75(7)	N(15)-N(16)-H(19)	106.4(10)
N(13)-C(8)-N(15)	116.38(6)	H(19)-N(16)-H(20)	106.7(13)

	Angle		Angle
C(2)-N(1)-C(3)-O(3)	179.68(6)	C(2)-N(1)-C(3)-N(3)	-0.91(10)
C(3)-N(1)-C(2)-O(2)	-178.50(6)	C(3)-N(1)-C(2)-N(2)	1.80(10)
C(1)-N(2)-C(2)-O(2)	179.96(6)	C(1)-N(2)-C(2)-N(1)	-0.33(11)
C(2)-N(2)-C(1)-O(1)	178.02(6)	C(2)-N(2)-C(1)-N(3)	-1.92(10)
C(1)-N(3)-C(3)-O(3)	177.88(6)	C(1)-N(3)-C(3)-N(1)	-1.55(10)
C(3)-N(3)-C(1)-O(1)	-177.08(6)	C(3)-N(3)-C(1)-N(2)	2.86(10)
C(4)-N(4)-C(5)-O(5)	-178.98(6)	C(4)-N(4)-C(5)-N(5)	1.14(10)
C(5)-N(4)-C(4)-O(4)	178.06(6)	C(5)-N(4)-C(4)-N(6)	-1.99(10)
C(5)-N(5)-C(6)-O(6)	-177.21(6)	C(5)-N(5)-C(6)-N(6)	2.33(10)
C(6)-N(5)-C(5)-O(5)	178.82(6)	C(6)-N(5)-C(5)-N(4)	-1.30(10)
C(4)-N(6)-C(6)-O(6)	176.48(6)	C(4)-N(6)-C(6)-N(5)	-3.05(9)
C(6)-N(6)-C(4)-O(4)	-177.17(6)	C(6)-N(6)-C(4)-N(4)	2.88(9)
N(9)-N(8)-C(7)-N(7)	2.76(10)	N(9)-N(8)-C(7)-N(10)	-178.22(5)
N(11)-N(10)-C(7)-N(7)	179.02(5)	N(11)-N(10)-C(7)-N(8)	0.01(9)
N(14)-N(13)-C(8)-N(12)	-0.54(10)	N(14)-N(13)-C(8)-N(15)	179.60(6)
N(16)-N(15)-C(8)-N(12)	-0.67(10)	N(16)-N(15)-C(8)-N(13)	179.20(5)

Table S12. Torsion Angles[°] for **4**. (Those having bond angles > 160 or < 20 degrees are excluded.)</th>

Table S13. Hydrogen bonds for 4 [Å and °].

	d(D Ц)	d(۲ ۷)		
		u(пA)	u(DA)	<(DRA)
$N(2) - \Pi(1) \dots O(0) = 1$	2.0104(10)	0.000(14)	1.942(14)	1/0.2(13)
N(3)-H(2)O(4)	2.8221(11)	0.856(15)	1.978(15)	168.6(13)
N(4)-H(3)O(3)	2.8444(11)	0.890(15)	1.955(15)	177.2(13)
N(5)-H(4)O(2)#2	2.7786(10)	0.875(14)	1.905(14)	175.9(13)
N(7)-H(5)O(6)#3	2.8729(11)	0.902(16)	2.052(16)	150.9(13)
N(7)-H(6)N(9)	2.6609(12)	0.906(12)	2.244(14)	107.5(11)
N(7)-H(6)N(14)#4	3.0843(11)	0.906(12)	2.247(13)	153.5(12)
N(8)-H(7)O(1)	2.8091(11)	0.867(13)	2.079(13)	141.4(10)
N(8)-H(7)N(9)	1.4077(9)	0.867(13)	2.016(12)	35.8(5)
N(8)-H(7)N(11)	2.6575(10)	0.867(13)	2.298(11)	105.0(9)
N(9)-H(8)O(2)#5	2.9400(11)	0.909(14)	2.076(14)	158.2(13)
N(9)-H(8)N(8)	1.4077(9)	0.909(14)	1.916(13)	43.8(6)
N(9)-H(9)N(8)	1.4077(9)	0.944(14)	1.944(14)	42.9(6)
N(10)-H(10)N(1)#6	2.8133(12)	0.906(14)	1.908(14)	177.6(12)
N(10)-H(10)N(11)	1.4135(11)	0.906(14)	2.024(16)	37.2(7)
N(11)-H(11)N(10)	1.4135(11)	0.924(14)	1.915(15)	44.5(7)
N(11)-H(12)N(10)	1.4135(11)	0.899(13)	1.881(16)	46.0(8)
N(12)-H(13)O(4)	2.8367(12)	0.906(14)	1.951(14)	165.3(12)
N(12)-H(13)N(14)	2.8352(12)	0.906(14)	2.563(13)	98.0(9)
N(12)-H(14)N(16)	2.7058(12)	0.860(15)	2.372(14)	103.6(10)
N(12)-H(14)N(16)3#	2.9212(11)	0.860(15)	2.159(14)	147.5(12)
N(13)-H(15)N(6)#7	2.9004(10)	0.853(14)	2.071(14)	163.7(15)
N(13)-H(15)N(14)	1.4051(11)	0.853(14)	1.943(15)	40.3(8)
N(14)-H(16)N(13)	1.4051(11)	0.911(15)	1.927(16)	43.0(8)
N(14)-H(17)N(13)	1.4051(11)	0.876(13)	1.893(14)	44.3(7)
N(15)-H(18)O(3)#6	2.8441(11)	0.908(13)	2.098(15)	138.8(13)
N(15)-H(18)N(16)	1.4064(11)	0.908(13)	2.005(14)	38.1(7)
N(16)-H(19)N(15)	1.4064(11)	0.879(14)	1.856(15)	46.6(8)
N(16)-H(20)O(5)#6	2.9192(11)	0.912(14)	2.012(14)	173.4(13)
N(16)-H(20)N(15)	1.4064(11)	0.912(14)	1.883(15)	45.7(7)
Symmetry transformations	used to generate equ	ivalent atoms:		

#1 x,y,z+1 #2 x,y,z-1 #3 -x,-y+1,-z+1 #4 x-1,y,z #5 -x,-y+2,-z+2 #6 x,y-1,z

#7 -x+1,-y+1,-z+1

	х	У	Z	U(eq)	
O(1)	4217(3)	4258(2)	2780(2)	27(1)	
O(2)	2959(3)	-627(2)	4313(2)	24(1)	
O(3)	-899(3)	3223(2)	477(2)	24(1)	
O(4)	2024(4)	6054(2)	5583(2)	35(1)	
N(1)	3716(4)	1793(2)	3516(2)	22(1)	
N(2)	998(4)	1287(2)	2395(2)	22(1)	
N(3)	1774(4)	3757(2)	1550(2)	22(1)	
N(4)	4913(4)	7629(2)	1083(2)	26(1)	
N(5)	7660(4)	6971(2)	2891(2)	23(1)	
N(6)	9042(4)	7741(2)	3198(2)	25(1)	
N(7)	8622(4)	9140(2)	2250(2)	24(1)	
N(8)	7003(4)	9347(2)	1312(2)	23(1)	
C(1)	3291(4)	3333(3)	2621(3)	22(1)	
C(2)	2580(4)	725(3)	3458(2)	21(1)	
C(3)	536(4)	2788(2)	1407(2)	20(1)	
C(4)	6428(4)	7970(3)	1738(2)	21(1)	

Table S14. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for $9 \cdot H_2O$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

O(1)-C(1)	1.228(3)	N(3)-C(3)	1.376(3)	
O(2)-C(2)	1.224(3)	N(3)-H(2)	0.85(3)	
O(3)-C(3)	1.221(3)	N(4)-C(4)	1.350(3)	
O(4)-H(7)	0.87(4)	N(4)-H(4)	0.89(4)	
O(4)-H(8)	0.90(4)	N(4)-H(5)	0.89(3)	
N(1)-C(1)	1.372(3)	N(5)-C(4)	1.339(3)	
N(1)-C(2)	1.381(3)	N(5)-N(6)	1.362(2)	
N(1)-H(1)	0.99(3)	N(5)-H(6)	0.98(4)	
N(2)-C(2)	1.365(3)	N(6)-N(7)	1.288(3)	
N(2)-C(3)	1.372(3)	N(7)-N(8)	1.359(3)	
N(2)-H(3)	0.78(3)	N(8)-C(4)	1.334(3)	
N(3)-C(1)	1.367(3)			
H(7)-O(4)-H(8)	112(4)	N(7)-N(6)-N(5)	106.31(18)	
C(1)-N(1)-C(2)	124.4(2)	N(6)-N(7)-N(8)	111.78(17)	
C(1)-N(1)-H(1)	117.5(18)	C(4)-N(8)-N(7)	105.05(18)	
C(2)-N(1)-H(1)	118.0(18)	O(1)-C(1)-N(3)	122.7(2)	
C(2)-N(2)-C(3)	124.68(19)	O(1)-C(1)-N(1)	121.9(2)	
C(2)-N(2)-H(3)	119(2)	N(3)-C(1)-N(1)	115.38(19)	
C(3)-N(2)-H(3)	116(2)	O(2)-C(2)-N(2)	122.71(19)	
C(1)-N(3)-C(3)	124.58(19)	O(2)-C(2)-N(1)	121.9(2)	
C(1)-N(3)-H(2)	123(2)	N(2)-C(2)-N(1)	115.4(2)	
C(3)-N(3)-H(2)	112(2)	O(3)-C(3)-N(2)	121.67(19)	
C(4)-N(4)-H(4)	114(2)	O(3)-C(3)-N(3)	122.9(2)	
C(4)-N(4)-H(5)	121.4(19)	N(2)-C(3)-N(3)	115.40(18)	
H(4)-N(4)-H(5)	122(3)	N(8)-C(4)-N(5)	108.88(19)	
C(4)-N(5)-N(6)	107.99(18)	N(8)-C(4)-N(4)	125.4(2)	
C(4)-N(5)-H(6)	133(2)	N(5)-C(4)-N(4)	125.6(2)	
N(6)-N(5)-H(6)	119(2)			

Table S15. Bond lengths [Å] and angles [°] for $9{\cdot}H_2O.$

	U11	U22	U33	U23	U13	U12
O(1)	39(1)	18(1)	35(1)	-7(1)	-15(1)	-16(1)
O(2)	32(1)	12(1)	30(1)	-2(1)	-12(1)	-12(1)
O(3)	31(1)	17(1)	30(1)	-5(1)	-14(1)	-12(1)
O(4)	45(1)	19(1)	48(1)	1(1)	-25(1)	-21(1)
N(1)	30(1)	16(1)	30(1)	-6(1)	-14(1)	-13(1)
N(2)	30(1)	16(1)	29(1)	-6(1)	-12(1)	-13(1)
N(3)	33(1)	12(1)	29(1)	-3(1)	-15(1)	-13(1)
N(4)	35(1)	18(1)	34(1)	-6(1)	-12(1)	-17(1)
N(5)	31(1)	14(1)	30(1)	-6(1)	-11(1)	-14(1)
N(6)	31(1)	18(1)	32(1)	-7(1)	-12(1)	-13(1)
N(7)	30(1)	18(1)	33(1)	-7(1)	-11(1)	-14(1)
N(8)	30(1)	15(1)	31(1)	-6(1)	-11(1)	-13(1)
C(1)	28(1)	17(1)	29(1)	-9(1)	-9(1)	-11(1)
C(2)	26(1)	18(1)	26(1)	-7(1)	-7(1)	-13(1)
C(3)	27(1)	15(1)	25(1)	-7(1)	-6(1)	-11(1)
C(4)	27(1)	16(1)	25(1)	-7(1)	-5(1)	-13(1)

Table S16. Anisotropic displacement parameters (Å² x 10³) for $9 \cdot H_2 O$. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2} U_{11} + ... + 2hka^*b^*U_{12}$].

Table S17. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å 2 x 10 3) for 9·H₂O.

	х	У	Z	U(eq)
H(1)	4810(50)	1450(30)	4300(30)	31(7)
H(2)	1410(50)	4670(40)	930(30)	32(7)
H(3)	300(50)	740(40)	2330(30)	22(6)
H(4)	4460(60)	6720(40)	1620(40)	33(7)
H(5)	4030(50)	8360(30)	370(30)	18(6)
H(6)	7710(60)	5880(50)	3490(40)	45(9)
H(7)	1470(70)	6700(50)	4750(40)	49(10)
H(8)	3320(70)	6320(50)	5770(40)	55(10)

Table S18. Torsion angles [°] for $9 \cdot H_2O$.

(C(4)-N(5)-N(6)-N(7)	-0.1(3)
	N(5)-N(6)-N(7)-N(8)	0.0(3)
	N(6)-N(7)-N(8)-C(4)	0.0(2)
	C(3)-N(3)-C(1)-O(1)	-174.7(2)
	C(3)-N(3)-C(1)-N(1)	5.3(3)
	C(2)-N(1)-C(1)-O(1)	175.2(2)
	C(2)-N(1)-C(1)-N(3)	-4.8(3)
	C(3)-N(2)-C(2)-O(2)	-179.4(2)
	C(3)-N(2)-C(2)-N(1)	1.1(3)
	C(1)-N(1)-C(2)-O(2)	-177.6(2)
	C(1)-N(1)-C(2)-N(2)	1.8(3)
	C(2)-N(2)-C(3)-O(3)	179.9(2)
	C(2)-N(2)-C(3)-N(3)	-0.7(3)
	C(1)-N(3)-C(3)-O(3)	176.7(2)
	C(1)-N(3)-C(3)-N(2)	-2.7(3)
	N(7)-N(8)-C(4)-N(5)	-0.1(2)
	N(7)-N(8)-C(4)-N(4)	-178.2(2)
	N(6)-N(5)-C(4)-N(8)	0.1(3)
	N(6)-N(5)-C(4)-N(4)	178.2(2)

Table S19. Hydrogen bonds for $9 \cdot H_2 O$ [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
N(1)-H(1)O(2)#1	0.99(3)	1.84(3)	2.823(3)	174(3)		
N(3)-H(2)O(3)#2	0.85(3)	1.93(3)	2.772(3)	174(3)		
N(2)-H(3)N(7)#3	0.78(3)	2.05(4)	2.825(3)	176(3)		
N(4)-H(4)O(1)	0.89(4)	2.22(4)	3.097(3)	168(3)		
N(4)-H(5)N(8)#4	0.89(3)	2.18(3)	3.011(3)	156(2)		
N(5)-H(6)O(4)#5	0.98(4)	1.69(4)	2.668(3)	175(3)		
O(4)-H(7)N(6)#6	0.87(4)	2.03(4)	2.849(3)	157(3)		
O(4)-H(8)O(1)#5	0.90(4)	2.02(4)	2.803(3)	145(3)		
Symmetry transformations used to generate equivalent atoms:						
#1 -x+1,-y,-z+1	#2 -x,-y+1,-z #	3 x-1,y-1,z #4 -x+2	1,-y+2,-z #5 -x+1,-y+2	l,-z+1 #6 x-1,y,z		

Table 320. Crystal data and structure refinement for CA 1120.	Table S20. Cr	ystal data and	structure	refinement f	for CA·H ₂ O.
---	---------------	----------------	-----------	--------------	--------------------------

	CA·H ₂ O
Formula	$C_3H_7N_3O_5$
M(g/mol)	165.12
Crystal Color	colorless
Crystal System	Monoclinic
Space Group	C2/c
a [Å]	12.312(3)
b [Å]	6.7174(14)
c [Å]	8.707(2)
α [°]	90
β [°]	115.09(2)
γ [°]	90
<i>V</i> [ų]	652.2(3)
Ζ	4
<i>T</i> [k]	123
λ [Å]	0.71075
$ ho_{\text{calcd}}$ [g/cm-3]	1.82
μ [mm ⁻¹]	0.160
F (000)	344
crystal size [mm ³]	0.220×0.200×0.180
ϑ _{max} [°]	27.840
No. Refl. collected	3576
No. Indep. reflections	778
[R int]	0.0898
GOF ^[a] on <i>F</i> ²	0.954
R ₁ ^[b] [/>2σ(/)]	0.05654
$wR_2^{[c]}$ [All refl.]	0.1360

Crystal of $CA \cdot H_2O$ was obtained when we cultured the crystal salt 5 by slow evaporation from water solution at room temperature and normal pressure. Its CCDC number is 1447126.

Figure S1 Molecular structure of CA·H₂O. Ellipsoids are drawn at the 50% probability level.

Table S21. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) for CA·H₂O. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	х	у	Z	U(eq)
O(1)	3607(1)	950(2)	4738(2)	21(1)
O(2)	5000	6818(3)	7500	32(1)
O(3)	1966(2)	1728(3)	1371(2)	24(1)
N(1)	5000	924(4)	7500	14(1)
N(2)	4285(2)	3914(3)	6088(2)	16(1)
C(1)	4250(2)	1870(3)	6017(3)	15(1)
C(2)	5000	4995(5)	7500	19(1)

Table S22. Bond lengths [Å] and angles [°] for $CA \cdot H_2O$.

O(1)-C(1)	1.225(3)	H(1)-O(3)-H(4)	106(3)
O(2)-C(2)	1.225(4)	C(1)#1-N(1)-C(1)	125.3(3)
O(3)-H(1)	0.85(4)	C(1)#1-N(1)-H(3)	117.36(13)
O(3)-H(4)	0.92(5)	C(1)-N(1)-H(3)	117.36(13)
N(1)-C(1)#1	1.383(2)	C(1)-N(2)-C(2)	124.3(2)
N(1)-C(1)	1.383(2)	C(1)-N(2)-H(2)	115(2)
N(1)-H(3)	0.98(4)	C(2)-N(2)-H(2)	120(2)
N(2)-C(1)	1.374(3)	O(1)-C(1)-N(2)	122.7(2)
N(2)-C(2)	1.377(3)	O(1)-C(1)-N(1)	122.3(2)
N(2)-H(2)	0.85(4)	N(2)-C(1)-N(1)	114.9(2)
C(2)-N(2)#1	1.377(3)	O(2)-C(2)-N(2)#1	121.82(13)
		O(2)-C(2)-N(2)	121.82(13)
		N(2)#1-C(2)-N(2)	116.4(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2

	U11	U22	U33	U23	U13
O(1)	26(1)	12(1)	17(1)	-2(1)	1(1)
O(2)	49(2)	5(1)	30(2)	0	5(1)
O(3)	30(1)	13(1)	20(1)	-2(1)	2(1)
N(1)	19(1)	6(1)	14(1)	0	4(1)
N(2)	21(1)	7(1)	15(1)	1(1)	3(1)
C(1)	18(1)	10(1)	17(1)	2(1)	7(1)
C(2)	25(2)	11(2)	17(2)	0	5(1)

Table S22. Anisotropic displacement parameters (Å² x 10³) for CA·H₂O. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [$h^{2}a^{*2}$ U $_{11}$ + ... + 2hka*b*U $_{12}$].

Table S23. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for CA·H₂O.

	х	У	Z	U(eq)
H(1)	2570(40)	1830(60)	2320(60)	98(16)
H(2)	3790(30)	4500(50)	5210(40)	49(9)
H(3)	5000	-540(60)	7500	16(8)
H(4)	1850(30)	2970(80)	890(50)	107(16)

Table S24. Torsion angles [°] for $CA \cdot H_2O$.

C(2)-N(2)-C(1)-O(1)	-179.65(17)
C(2)-N(2)-C(1)-N(1)	0.0(2)
C(1)#1-N(1)-C(1)-O(1)	179.7(2)
C(1)#1-N(1)-C(1)-N(2)	-0.02(11)
C(1)-N(2)-C(2)-O(2)	179.98(13)
C(1)-N(2)-C(2)-N(2)#1	-0.02(13)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2

Computational Details

Scheme S1. Isodesmic reactions for 2, 4,5 and 6 cations and 5-amino-1H-tetrazole

In the ¹³C NMR spectra, a single peak (~ 152 ppm) is due to the anion, indicating the anion ring tautomerism.

Fig. S3 ¹³C NMR spectra of salt 6.

In the 13C NMR spectra, there are two signals (~150 ppm and ~162 ppm). single peak at 150 ppm is due to the anion, and the other one at 162 ppm is associated with the cation.