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Experimental section

The morphology of the as−prepared product was studied by using transmission electron microscope (TEM, Hitachi H-

7560). Fourier transform infrared (FT−IR) spectra measurement was carried out on a NICOLET 380 Fourier transform 

infrared spectrophotometer. X-ray photoelectron spectrum (XPS) was recorded on a PHI quantera SXM spectrometer 

with an Al Kα = 280.00 eV excitation source, where binding energies were calibrated by referencing the C1s peak (284.8 

eV) to reduce the sample charge effect. The N2 sorption isotherms were measured on NOVA 1000e surface area and 

poresize analyzer (Quantachrome Instrument, USA) at 77 K. From the adsorption branch of isotherm curves in the P/P0 

range between 0.05 and 0.35, the specific surface areas of the CCGC are calculated by the multi-point 

Brunauer−Emmett−Teller (BET) method. The pore size distribution was evaluated by the Barrett-Joyner-Halenda (BJH) 

model. The total pore volume was determined from the amount adsorbed at the relative pressure of about 0.99.

Graphite oxide was prepared from natural graphite according to a modified Hummers method.[27] First, an aqueous 

solution (200 mL) of graphite oxide (200 mg) was stirred and ultrasonicated for 2 h to form aqueous suspension of 

graphene oxide (GO). An aqueous solution (20 mL) of Co nitrate (13.842 g for CRGC-I and 13.703 g for CRGC-II) and 

ruthenium trichloride (0.0645 g for CRGC-I and 0.1295 g for CRGC-II) an aqueous solution (15 mL) of polyvinyl 
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pyrrolidone (PVP, MW: 58000, 150 mg) were added to the aqueous suspension of GO under stirring and then the 

mixture was stirred for further 4 h. Then an aqueous solution (20 mL) of sodium hydroxide (3.844 g) was added into the 

mixture followed by a further stirring for 0.5 h. An aqueous solution of glucose (4.504 g) was then added and the mixture 

was stirred for another 0.5 h. The mixture was transferred into a Teflon-lined stainless steel autoclave (500 mL) and 

heated to 180 °C for 24 h. After cooling to room temperature naturally, the resulting solid was washed with water and 

dried at 80 °C in air for 12 h. After being heated to 550 °C with a heating rate of 10 °C·min–1 and kept for 1 h under N2 

flow, the solid powder was cooled and added into an ethanol solution (15 mL) (Caution! The sample is easy to combust 

when exposed to air.). After dried in air at room temperature, black powder was obtained and noted as CRGC-I (1 mol% 

of Ru) and CRGC-II (2 mol% of Ru).

Scheme S1. The synthesis route and structure of CCGC.

Figure S1. The thermal analysis curves of (a) the CCGC-I, (b) the CCGC-II, (c) the CCGC-III and (d) Co-C in air 
atmosphere.
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Figure S2. TEM images of (a, b) CCGC-I, (c, d) CCGC-II, (e, f) CCGC-III and (g, h) Co-C.

Figure S3. FT-IR spectra of Co-C, CCGC, rGO and GO.

In FT-IR spectrum (Figure S3), the bands at 1726 and 1053 cm–1can be assigned to GO. No stretching vibration of carboxyl groups 

1726 cm–1 can be observed for the CCGC and rGO, suggesting the complete reduction of GO to rGO.[S1] The peak at 1580-1680 cm–1 

can be assigned to the stretching vibration of C=C of rGO.[S2] Another peak at 990-1150 cm–1 can be assigned to the stretching 

vibration of O-C-O of rGO.[S2]
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Figure S4. (a-c) XPS spectra of the CCGC-I.

Figure S5. (a) N2-sorption isotherms and (b) pore width distribution of the CCGC-I.
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Figure S6. The photograph of the catalytic hydrogen generation in (a) batch and (b) slurry-bed reactor, the magnetic 
performance of catalysts (c) with magneton or external magnetic field, and (d) the catalyst was separated from reaction 
mixture by a magnet to stop reaction.

Figure S7. The catalytic performances of the CCGC-I in hydrogen generation at 303 K (a, c) under various stirring rates 
from 0.1 M of NaBH4 and (b, d) from various concentration of NaBH4 under stirring rate of 500 rpm. (a, b) Magneton-
stirring mode and (c, d) self-stirring mode.
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Figure S8. The catalytic performances of (a) the CCGC-II, (b) the CCGC-III, and (c) Co-C in hydrogen generation from 
NaBH4 at 303 K under stirring rate of 500 r/min.

Figure S9. The XRD patterns of CRGC.

Figure S10. (a) N2-sorption isotherms and (b) pore width distribution of of the CRGC (1%).
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Figure S11. (a) N2-sorption isotherms and (b) pore width distribution of the CRGC (2%).

Table S1. The hydrogenation generation rates and activation energies with various catalysts from literatures.

Catalyst Catalyst 
Weight
(mg)

Hydride Maximun H2 

Generation 
specific rate

(mL·min−1·g−1)

Activation 
Energy

(kJ·mol−1)

Reference

Pt/C 100 NaBH4 23,000 (298 K) – S3
Pt/CoO 3.8 NaBH4 350 (293 K) – S4

Pt/LiCoO2 20 NaBH4 3680 (303 K) 70.4 S5
Co@Pt core–shell 7 NH3BH3 5869 (303 K) – S6

Raney Co 500 NaBH4 267.5 (293 K) 53.7 S7

Raney Ni50Co50 500 NaBH4 648.2 (293 K) 52.5 S7
Cu/Co3O4 12 NH3BH3 1411 (298 K) – S8
Co–P–B 15 NaBH4 2120 (298 K) 32 S9

Octahedral CoO 20 NaBH4 8333 (303 K) – S10
CoO 10 NaBH4 6130 (303 K) 45.94 S11

CCS/Co 20 NaBH4 10400 (293 K) 21.51 S12
Co/IR-120 200 NaBH4 200 (298 K) 66.67 S13
Ni–Fe–B 200 NaBH4 2910 (298 K) 57.0 S14

Co–Mo–B 10 NaBH4 4200 (303 K) 43.7 S15
Co–Ni–P/Pd–TiO2 25 NaBH4 460 (298 K) 57.0 S16

Co–W–P – NaBH4 5000 (303 K) 22.8 S17
Co-B 250 NaBH4 – 44.1 S18
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