Supplementary Information

High-capacity organic cathode active materials of $\mathbf{2 , 2}$ '-bis-p-benzoquinone derivatives for rechargeable batteries

Takato Yokoji, ${ }^{\text {a }}$ Yuki Kameyama, ${ }^{\text {a }}$ Norihiko Maruyama ${ }^{\mathrm{b}}$ and Hiroshi Matsubara ${ }^{\text {a,* }}$
${ }^{a}$ Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
${ }^{b}$ Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto 617-8555, Japan.
* Corresponding author. Tel.: +81 72254 9698; Fax: +81 72254 9163. E-mail address: matsu@c.s.osakafu-u.ac.jp (H. Matsubara).

Contents

Fig. S1-S12 and Table S1 S2
Electrolyte effects in charge-discharge curves and cycle performance S8
Experimental details of preparations for cathode active materials S9
Experimental details of DFT calculation and Gaussian archives S15
Solubility study of BBQ derivatives S20
References S21
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of compounds involved in this study S22

Fig. S1 Charge-discharge curves and cycle-life performance over eight cycles for (a) BQ and (b) NDQ cells in 1.0 M LiPF ${ }_{6}$-EC/DEC.

Fig. S2 CV of NDQ in acetonitrile.

Table S1 Electrochemical parameters and the enrgy levels of LUMO and HOMO for BQ and BBQ.

Sample	$E_{1 p, ~ c}$ in solution CV (V)	Discharge voltage (V)	LUMO level (eV)	HOMO level (eV)
BQ	-0.91	2.8	-3.947	-7.797
BBQ	-0.76	2.9	-4.251	-7.736
NDQ	-0.34	$1.8-3.4$	-4.645	-7.404

DFT calculations were carried out on the B3LYP/6-31+G* level.

Fig. S3 Electrode CVs^{2} of (a) $\mathrm{Br}_{2}-$ and (b) $\mathrm{Me}_{2}-\mathrm{BBQ}$ cells (1.0 $\mathrm{M} \mathrm{LiPF}_{6}$-EC/DEC) at initial cycle.

Fig. S4 Electrode CVs of BBQ cells ($1.0 \mathrm{M} \mathrm{LiPF}_{6}-\mathrm{EC} / \mathrm{DEC}$) from first to eighth cycles.

Fig. S5 Cycle-life performance over twenty cycles for cells based on $\mathrm{R}_{2}-\mathrm{BBQ}(\mathrm{R}=\mathrm{Br}, \mathrm{Me}, n \mathrm{Bu}$, and Pr$)$ in 2.75 M LiTFSI-tetraglyme systems.

Fig. S6 Charge-discharge curves and cycle-life performance over eight cycles for (a) $\mathrm{F}_{2^{-}}$, (b) $\mathrm{Cl}_{2}-$, (c) $\mathrm{Br}_{2^{-}}$, (d) $\mathrm{Me}_{2^{-}}$, (e) $n \mathrm{Bu}_{2^{-}}$, (f) $\mathrm{iPr}_{2^{-}}$, (g) $t \mathrm{Bu}_{2^{-}}$, and (h) (OMe) $\mathbf{2}_{2}$-BBQ cells in 2.75 M LiTFSI-tetraglyme systems.

Fig. S8 Electrode CV of $(\mathrm{OMe})_{2}$-BBQ cells at initial cycle.

Fig. S9 Cycle-life performance over twenty cycles for cells based on (a) $\mathrm{Cl}-\mathrm{BQ}$ and $\mathrm{Cl}_{2}-\mathrm{BBQ}$, and (b) O $\mathrm{Me}-\mathrm{BQ}$ and $(\mathrm{OMe})_{2}-\mathrm{BBQ}$ in 2.75 M LiTFSI-tetraglyme systems.

Fig. S10 Charge-discharge curves and cycle-life performance over eight cycles for (a) $\mathrm{Cl}-\mathrm{BQ}$, (b) $\mathrm{Me}-\mathrm{BQ}$, and (c) OMe-BQ in 2.75 M LiTFSI-tetraglyme systems.

Fig. S11 Cycle-life performance over 50th cycles for cells based on (OMe) $)_{2}$-BBQ in 2.75 M LiTFSI-tetraglyme systems.

Fig. S12 Cyclability for $\mathrm{Br}_{2}-\mathrm{BBQ}$ cells in $1.0 \mathrm{M} \mathrm{LiPF}_{6}$-EC/DEC, 1.0 M LiTFSI-EiPS, and 2.75 M LiTFSI-tetraglyme systems.

Electrolyte effects in charge-discharge curves and cycle performance

Effects of the electrolyte in the BBQ cell was examined by preparing cells with three different electrolytes: EiPS with $1.0 \mathrm{M} \mathrm{LiN}\left(\mathrm{SO}_{2} \mathrm{CF}_{3}\right)_{2}(\mathrm{LiTFSI})$, tetraglyme with 2.75 M LiTFSI, and a mixture of EC ($30 \mathrm{vol} \%$) and DEC ($70 \mathrm{vol} \%$) with $1.0 \mathrm{M} \mathrm{LiPF}_{6}$. The cyclability for the BBQ cells in different electrolytes is shown in Fig. S12, and the charge-discharge curves over eight cycles are depicted in Fig. S13. The LiTFSI-EiPS system provided the highest initial capacity of $429 \mathrm{Ah}_{\mathrm{kg}}{ }^{-1}$, which exceeded the theoretical value involving three electrons ($376 \mathrm{Ah} \mathrm{kg}^{-1}$). However, its discharge capacity significantly faded to $370 \mathrm{Ah} \mathrm{kg}^{-1}$ in the second cycle. In the LiTFSI-tetraglyme system, the cell afforded an initial capacity of $358 \mathrm{Ah} \mathrm{kg}^{-1}$, and surprisingly increased to $368 \mathrm{Ah} \mathrm{kg}^{-1}$ in the second cycle. Although the initial capacity in the tetraglyme system was smaller than in the EiPS system, tetraglyme afforded the highest cycle retention rate (the ratios of the 20 th capacity to the 1 st in the tetraglyme, EiPS, and EC/DEC systems were 67,47 , and 52%, respectively), and its capacity remained at $239 \mathrm{Ah} \mathrm{kg}^{-1}$ at the 20th cycle.

Fig. S13 Cyclability over twenty cycles for BBQ cells in $1.0 \mathrm{M} \mathrm{LiPF}_{6}$-EC/DEC, 1.0 M LiTFSI-EiPS, and 2.75 M LiTFSI-tetraglyme systems: plots of (a) capacity retention rate versus cycle number and (b) capacity retention rate versus cycle number.

Fig. S14 Charge-discharge curves and cycle-life performance over eight cycles for BBQ cells in (a) 1.0 M LiTFSI-EiPS, and (b) 2.75 M LiTFSI-tetraglyme systems.

Experimental details of preparations for cathode active materials

Melting points were obtained with a Yanako micro melting point apparatus and are not corrected. Products were purified by flash chromatography on silica gel (Kanto Chemical Co., Inc., Silica Gel 60 N (spherical, neutral), 63-210 $\mu \mathrm{m}$). ${ }^{1} \mathrm{H}$ NMR spectra were recorded with JEOL-ECP-500 (500 MHz) and JEOL-ECP-400 $(400 \mathrm{MHz})$ spectrometers in CDCl_{3} or $\mathrm{DMSO}-\mathrm{d}_{6}$. Chemical shifts were reported in parts per million (δ) referenced to the solvent peak at 7.26 or $2.49 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectra were recorded with JEOL-ECP-500 (126 MHz) and JEOL-ECP-400 $(100 \mathrm{MHz})$ spectrometers in CDCl_{3} or DMSO- d_{6}, and referenced to the solvent peak at 77.0 or 39.7 ppm . Coupling constants, J, were reported in Hertz (Hz), and splitting patterns were designated as s (singlet), d (doublet), t (triplet), sext (sextet), sept (septet), dd (double doublet), dt (double triplet) and m (multiplet). IR spectra were obtained on a JASCO FT/IR-4100 or a JASCO FT/IR-5300 spectrometer; absorptions were reported in reciprocal centimeters. Conventional mass spectra were recorded with SHIMADZU GCMS-QP2010Plus and JEOL MS-700 spectrometers, and high-resolution mass spectra were recorded with a JEOL MS-700 spectrometer. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

1,4,5,8-Naphthodiquinone (NDQ)

A mixture of $1(570 \mathrm{mg}, 3.00 \mathrm{mmol})$ and [bis(trifluoroacetoxy)iodo]benzene ($3.02 \mathrm{~g}, 7.02 \mathrm{mmol}$) in acetone (20 mL) was stirred for 1.5 h at room temperature. Then, [bis(trifluoroacetoxy)iodo]benzene $(3.44 \mathrm{~g}, 8.00 \mathrm{mmol})$ was added to the reaction mixture, and the mixture was stirred at room temperature. After stirring for 2.5 h , the mixture was filtered through a glass filter, and the residue was washed with acetone and benzene, and then dried over under reduced pressure to yield NDQ (86 $\mathrm{mg}, 15 \%$) as a brown solid. M.p. 204.5-208. $0^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v=3065,1685,1642,1606,1299,1132$, $865 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=6.89$ ($\mathrm{s}, 4 \mathrm{H} ;$ vinyl-H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d ${ }_{6}$): $\delta=186.0,136.1,126.3 \mathrm{ppm}$.

2,2'-Bis-p-benzoquinone (BBQ)

A mixture of $2(2.75 \mathrm{~g}, 19.9 \mathrm{mmol})$, iodine $(2.03 \mathrm{~g}, 8.01 \mathrm{mmol})$, iodic acid $(1.04 \mathrm{~g}, 5.92 \mathrm{mmol})$, acetic acid (33 mL), water (7 mL), and sulfuric acid $(1 \mathrm{~mL})$ was heated to $60^{\circ} \mathrm{C}$ for 5 h . After cooling to room temperature, the reaction mixture was poured into 10% aqueous NaHSO_{3}. The insoluble precipitate was filtered off using a glass filter, and then washed with diethyl ether. The aqueous layer was then separated and extracted with diethyl ether. The combined organic layer was washed with brine, dried over sodium sulfate, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexane-chloroform $=2 / 1)$ to yield $\mathbf{3}(3.90 \mathrm{~g}, 74 \%)$ as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CICH}), 6.85(\mathrm{dd}, J=9.2$, $\left.3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CIC}\left(\mathrm{OCH}_{3}\right) \mathrm{CHCH}\right), 6.74\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CIC}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.74(\mathrm{~s}$,
$3 \mathrm{H} ; \mathrm{OCH}_{3}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.1,152.5,124.7,114.6,111.5,85.9,56.9,55.8$ ppm; LRMS (EI): m/z (\%): 264 (100) [M $\left.{ }^{+}\right], 249$ (78), 122 (18), 107 (23), 79 (22).
A mixture of $\mathbf{3}(5.84 \mathrm{~g}, 22.1 \mathrm{mmol})$, copper ($7.76 \mathrm{~g}, 122 \mathrm{mmol}$), 2, ${ }^{\prime}$ '-bipyridine ($347 \mathrm{mg}, 2.22 \mathrm{mmol}$), and DMSO (40 mL) was heated at $150^{\circ} \mathrm{C}$ under N_{2} for 15 h . After cooling to room temperature, water $(80 \mathrm{~mL})$ was added with cooling by an ice bath. The mixture was then filtered through a pad of Celite and the pad was washed with diethyl ether. The aqueous layer was separated and extracted with diethyl ether. The combined organic layer was washed with brine, dried over sodium sulfate, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexane-chloroform $=1 / 1$ and 100% chloroform) to yield $\mathbf{4}(1.99 \mathrm{~g}, 66 \%)$ as a white crystalline solid. M.p. $96.0-98.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$; $\left.\mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}\right), 6.86\left(\mathrm{dd}, J=8.7,3.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CHCH}\right), 6.84(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}$; $\mathrm{CCHC}\left(\mathrm{OCH}_{3}\right)$), $3.78\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.73\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{OCH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.2$, 151.2, 128.5, 117.1, 113.3, 112.4, 56.4, 55.6 ppm ; LRMS (EI): m/z (\%): 274 (100) [$\left.\mathrm{M}^{+}\right], 259$ (42), 244 (26), 228 (37), 213 (17).

To a mixture of $\mathbf{4}(551 \mathrm{mg}, 2.01 \mathrm{mmol})$ in acetonitrile $(15 \mathrm{~mL})$, a solution of CAN $(11.0 \mathrm{~g}, 6.00$ $\mathrm{mmol})$ in water $(15 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$, the mixture was then warmed slowly to room temperature. After stirring for 1 h , water (60 mL) and dichloromethane (30 mL) was added to the mixture. The aqueous layer was then separated and extracted with dichloromethane. The combined organic layer was washed with brine, dried over sodium sulfate, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: 100% chloroform and chloroform-ethyl acetate $=20 / 1$) to yield $\mathbf{B B Q}(294 \mathrm{mg}, 68 \%)$ as a yellow crystalline solid. M.p. $184.5-191.0^{\circ} \mathrm{C}$; IR (KBr): $v=1657,1594,1351,1293,1280,1101,928,918,847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.89(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CCOCH}), 6.86(\mathrm{dd}, J=10.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}$; CCOCHCH), 6.83 (d, $J=2.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CCHCO}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.2,184.4$, 139.9, 136.8, 136.6, 135.8 ppm; LRMS (EI): m/z (\%): 214 (63) [M $\left.{ }^{+}\right], 186$ (23), 130 (28), 102 (36), 82 (58), 54 (69), 50 (27), 44 (100).

5,5'-Difluoro-2,2'-bis-p-benzoquinone (\mathbf{F}_{2}-BBQ)

To a mixture of CAN ($7.24 \mathrm{~g}, 13.2 \mathrm{mmol}$) in water (12 mL), a solution of $\mathbf{5}(625 \mathrm{mg}, 4.00 \mathrm{mmol})$ in acetonitrile (12 mL) was added dropwise at room temperature. After stirring for 1.5 h , water (60 mL) was added to the mixture, and the mixture was filtered through a glass filter. The residue was washed with water and chloroform $/$ hexane $=1: 1$, then dried over under reduced pressure to yield \mathbf{F}_{2}-BBQ ($195 \mathrm{mg}, 39 \%$) as a yellow solid. M.p. $183.0-185.0^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): v=1685,1656,1604,1357,1163$, $921 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CCHCO}), 6.57(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $2 \mathrm{H} ; \mathrm{CFCH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=184.1(\mathrm{~d}, J=14.3 \mathrm{~Hz}$), 178.3 (d, $J=24.8 \mathrm{~Hz}$), 159.6 (d, $J=292.2 \mathrm{~Hz}), 139.4,134.4$ (d, $J=2.8 \mathrm{~Hz}$), 115.7 (d, $J=9.5 \mathrm{~Hz}$) ppm; LRMS (EI): $m / z(\%):$ 250 (100) $\left[\mathrm{M}^{+}\right], 129$ (58), 73 (77), 69 (64), 60 (53), 57 (61), 55 (62); HRMS (EI): found [$\left.\mathrm{M}^{+}\right]$ 250.0073, $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~F}_{2} \mathrm{O}_{4}{ }^{+}$requires 250.0078 .

5,5'-Dichloro-2,2'-bis-p-benzoquinone (Cl_{2}-BBQ)

To a mixture of CAN $(7.24 \mathrm{~g}, 13.2 \mathrm{mmol})$ in water $(12 \mathrm{~mL})$, a solution of $6(690 \mathrm{mg}, 4.00 \mathrm{mmol})$ in acetonitrile (12 mL) was added dropwise at room temperature. After stirring for 1.5 h , water (60 mL) was added to the mixture, and the mixture was filtered through a glass filter. The residue was washed with water, and dried over under reduced pressure. Then, the residue was purified by column chromatography on silica gel (eluent: 100% chloroform), and by washing with water and chloroform / hexane $=1: 1$, then dried over under reduced pressure to yield $\mathbf{C l}_{\mathbf{2}} \mathbf{-} \mathbf{B B Q}(176 \mathrm{mg}, 31 \%)$ as a yellow solid. M.p. $196.0-199.0^{\circ} \mathrm{C}$; IR (KBr): $v=1670,1653,1608,1570,1320,1194,1010,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.12(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CClCH}), 7.00(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CCHCO}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$): $\delta=182.8,179.0,143.1,139.6,136.0,134.2 \mathrm{ppm}$; LRMS (EI): m / z (\%): 286 (25), 284 (44), $282(56)\left[\mathrm{M}^{+}\right], 149$ (75), 84 (44), 81 (50), 73 (37), 69 (100), 57 (48), 55 (40).

5,5'-Dibromo-2,2'-bis-p-benzoquinone (Br_{2} - BBQ)

To a mixture of CAN $(7.24 \mathrm{~g}, 13.2 \mathrm{mmol})$ in water $(12 \mathrm{~mL})$, a solution of $7(868 \mathrm{mg}, 4.00 \mathrm{mmol})$ in acetonitrile (12 mL) was added dropwise at room temperature. After stirring for 1.5 h , water (60 mL) was added to the mixture, and the mixture was filtered through a glass filter. The residue was washed with water and chloroform $/$ hexane $=1: 1$, then dried over under reduced pressure to yield $\mathbf{B r}_{2}-\mathbf{B B Q}$ ($187 \mathrm{mg}, 25 \%$) as a yellow solid. M.p. $188.5-191.0^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v=1664,1604,1571,1318,1189$, 984, 910, $438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CBrCH}), 7.04(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CCHCO})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=181.7,178.4,139.0,138.2,137.7,135.6 \mathrm{ppm} ;$ LRMS (EI): m / z (\%): 374 (57), 372 (85), 370 (41) [$\left.\mathrm{M}^{+}\right], 149$ (40), 86 (44), 84 (63), 81 (49), 73 (41), 69 (100), 57 (45), 55 (43).

5,5'-Dimethyl-2,2'-bis-p-benzoquinone (Me $\mathbf{2}_{\mathbf{2}}$-BBQ)

To a mixture of CAN $(3.61 \mathrm{~g}, 6.60 \mathrm{mmol})$ in water $(6 \mathrm{~mL})$, a solution of $\mathbf{8}(304 \mathrm{mg}, 2.00 \mathrm{mmol})$ in acetonitrile $(6 \mathrm{~mL})$ was added dropwise at room temperature. After stirring for 1 h , water $(40 \mathrm{~mL})$ was added to the mixture, and the mixture was filtered through a glass filter. The crude product obtained was washed with water, and then dried over under reduced pressure. The residue was recrystallized from chloroform / ethanol to yield $\mathbf{M e}_{\mathbf{2}}$ - $\mathbf{B B Q}$ ($164 \mathrm{mg}, 68 \%$) as a yellow solid. Decomposition $167.0^{\circ} \mathrm{C}$; IR (KBr): $v=1649,1629,1577,1234,1205 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.81(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CCHCO}), 6.70\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right), 2.10\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right)$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=186.9,184.7,146.2,139.5,135.9,133.6,15.6 \mathrm{ppm}$; LRMS (EI): $m / z(\%): 242$ (100) $\left[\mathrm{M}^{+}\right], 146$ (82), 118 (24), 68 (41), 40 (37).

5,5'-Dimethoxy-2,2'-bis-p-benzoquinone ((OMe) $\mathbf{2}^{\prime}$-BBQ)

To a mixture of CAN $(18.1 \mathrm{~g}, 33.0 \mathrm{mmol})$ in water $(30 \mathrm{~mL})$, a solution of $9(1.68 \mathrm{~g}, 10.0 \mathrm{mmol})$ in acetonitrile (30 mL) was added dropwise at room temperature. After stirring for 1.5 h , water (150
mL) was added to the mixture, and the mixture was filtered through a glass filter. The residue was washed with water and methanol, then dried over under reduced pressure to yield (OMe) $\mathbf{2}$ - $\mathbf{B B Q}$ (93 $\mathrm{mg}, 7 \%$) as a yellow solid. Decomposition $214.0^{\circ} \mathrm{C}$; IR (KBr): $v=1671,1643,1620,1574,1225$, 1197, 1173, 998, $910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.77\left(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}\right), 6.04(\mathrm{~s}, 2 \mathrm{H}$; $\mathrm{CCHCO}), 3.87\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{OCH}_{3}\right) \mathrm{ppm}$; Measurement of ${ }^{13} \mathrm{C}$ NMR was unsuccesful because of low solubility of the product in general organic solvents; LRMS (EI): $m / z(\%): 274$ (100) $\left[\mathrm{M}^{+}\right], 245$ (47), 231 (37), 201 (21), 69 (24).

5,5'-Dibutyl-2,2'-bis- p-benzoquinone ($n \mathrm{Bu}_{2}$-BBQ)

To a mixture of $2(277 \mathrm{mg}, 2.00 \mathrm{mmol})$ and TMEDA ($621 \mathrm{mg}, 5.40 \mathrm{mmol}$) in dry hexane (4 mL), n-butyllithium (1.6 M hexane solution, $2.91 \mathrm{~g}, 6.00 \mathrm{mmol}$) was added dropwise at room temperature under N_{2}. After stirring for 20 h , the reaction mixture was cooled by an ice bath, 1-bromobutane $(1.154 \mathrm{~g}, 8.40 \mathrm{mmol})$ was then added dropwise to the mixture, and the mixture was warmed slowly to room temperature. After stirring for 12 h , the mixture was quenched by adding excess amount of water dropwise. The aqueous layer was separated and extracted with diethyl ether. The combined organic layer was then washed with brine, dried over sodium sulfate, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexanechloroform $=4 / 1$) to yield $10(84 \mathrm{mg}, 22 \%)$ as a colorless liquid. IR (neat): $v=2954,2931,1501$, $1465,1224,1050 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.76\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}\right), 6.73$ $\left(\mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CCHC}\left(\mathrm{OCH}_{3}\right)\right), 6.68\left(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CHCH}\right), 3.78(\mathrm{~s}, 3 \mathrm{H} ;$ $\left.\mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 2.58\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{2}\right), 1.59-1.52\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.37$ (sext, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.93\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $153.3,151.7,132.4,116.1,110.9,110.3,55.6,55.3,32.0,29.9,22,5,13.9 \mathrm{ppm}$; LRMS (EI): m/z (\%): 194 (90) [$\left.\mathrm{M}^{+}\right], 152$ (30), 151 (100), 137 (68), 121 (51), 91 (27), 77 (19).

To a mixture of CAN $(3.77 \mathrm{~g}, 6.87 \mathrm{mmol})$ in water $(15 \mathrm{~mL})$, a solution of $\mathbf{1 0}(403 \mathrm{mg}, 2.10 \mathrm{mmol})$ in acetonitrile (6 mL) was added dropwise at room temperature. After stirring for 1 h , water (60 mL) was added to the mixture. The mixture was filtered through a glass filter, and the residue was washed with water and then dried over under reduced pressure. The crude product obtained was recrystallized from chloroform / ethanol to yield $\boldsymbol{n B} \mathbf{u}_{\mathbf{2}}-\mathbf{B B Q}(220 \mathrm{mg}, 65 \%)$ as a yellow crystalline solid. M.p. $167.5-169.0^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): v=2953,2926,1661,1646,923 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.80(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CCHCO}), 6.65(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{C}(n \mathrm{Bu}) \mathrm{CH}), 2.46(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}, 4 \mathrm{H} ;$ CCH_{2}), 1.55-1.48 (m, 4H; $\mathrm{CCH}_{2} \mathrm{CH}_{2}$), $1.41\left(\mathrm{sext}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$; $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.8,185.0,150.0,139.2,136.2,132.6,29.8,28.5,22.4$, $13.8 \mathrm{ppm} ;$ LRMS (EI): $m / z(\%): 328$ (11), 327 (11) $[\mathrm{M}+\mathrm{H}]^{+}, 155$ (22), 138 (28), 137 (69), 136 (100), 107 (33), 91 (24), 90 (26), 89 (34), 77 (32).

5,5'-Diisopropyl-2,2'-bis-p-benzoquinone ($\boldsymbol{i P r}_{2}$ - $\mathbf{B B Q}^{\prime}$)

To a mixture of n-butyllithium (1.6 M hexane solution, $2.1 \mathrm{~mL}, 3.3 \mathrm{mmol}$) in dry THF (1 mL), a
solution of $2(279 \mathrm{mg}, 2.00 \mathrm{mmol})$ in dry THF (1.6 mL) was added at room temperature under argon. After stirring for 1 h , acetone ($480 \mathrm{mg}, 8.20 \mathrm{mmol}$) dissolved in dry THF (2.2 mL) was slowly added. After stirring for 1 h , the mixture was quenched by adding excess amount of water dropwise. The aqueous layer was then separated and extracted with diethyl ether. The combined organic layer was washed with brine, dried over sodium sulfate, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexane-ether $=1 / 2$) to yield $\mathbf{1 1}(186 \mathrm{mg}$, 47%) as a yellow liquid. IR (neat): $v=3444,2965,2939,2834,1491,1464,1420,1281,1218,1178$, $1070,1050,1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.91\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CCHC}\left(\mathrm{OCH}_{3}\right)\right), 6.85$ $\left(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}\right), 6.74\left(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CHCH}\right), 4.25(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{OH})$, $3.88\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 1.59\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 153.5, 151.0, 137.1, 113.0, 111.9, 111.1, 72.4, 55.7, 55.6, 29.5 ppm ; LRMS (EI): m/z (\%): 196 (47) $\left[\mathrm{M}^{+}\right], 181$ (98), 43 (100).

To a mixture of 10% palladium on carbon $(43 \mathrm{mg})$ and $11(372 \mathrm{mg}, 1.90 \mathrm{mmol})$ in ethyl acetate (5 mL), a drop of sulfuric acid was added, then the mixture was stirred at room temperature under the atmosphere of hydrogen using a balloon. After stirring for 24 h , water (50 mL) was added dropwise to the mixture. The palladium on carbon was filtered off, and the aqueous layer was separated and extracted with diethyl ether. The combined organic layer was washed with brine, dried over sodium sulfate, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexane-chloroform $=4 / 1)$ to yield $12(284 \mathrm{mg}, 79 \%)$ as a yellow liquid. IR (neat): $v=2959,1501,1464,1281,1220,1048 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.84(\mathrm{~d}, J=2.4$ $\left.\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{CCHC}\left(\mathrm{OCH}_{3}\right)\right), 6.80\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}\right), 6.70(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$; $\left.\mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CHCH}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.33(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}), 1.23(\mathrm{~d}$, $\left.J=7.6 \mathrm{~Hz}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.7,151.0,138.4,113.0,111.2,109.9$, 56.0, 55.5, 26.8, 22.7 ppm ; LRMS (EI): $m / z(\%): 180$ (74) [M $\left.{ }^{+}\right], 165$ (100), 150 (50), 105 (17).

To a mixture of CAN $(1.15 \mathrm{~g}, 2.10 \mathrm{mmol})$ in water $(4 \mathrm{~mL})$, a solution of $\mathbf{1 2}(115 \mathrm{mg}, 0.63 \mathrm{mmol})$ in acetonitrile (4 mL) was added dropwise at room temperature. After stirring for 1 h , water $(40 \mathrm{~mL})$ was added to the mixture. The mixture was filtered through a glass filter, and the residue was washed with water and then dried over under reduced pressure. The crude product obtained was recrystallized from chloroform / ethanol to yield $\boldsymbol{i P r}_{2} \mathbf{- B B Q}(76 \mathrm{mg}, 81 \%)$ as a yellow crystalline solid. M.p. 173.5-175.0 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=2966,1653,1600$, 1233, 1048, $925 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.81(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CCHCO}), 6.63(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{C}(i \operatorname{Pr}) \mathrm{CH}), 3.07(\mathrm{sept}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}), 1.16(\mathrm{~d}, J$ $\left.=6.8 \mathrm{~Hz}, 12 \mathrm{H} ; \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=186.4,185.4,155.3,139.0,136.4,130.7$, 26.8, 21.3 ppm ; LRMS (EI): m/z (\%): 300 (19), 299 (15), 298 (8) [$\left.\mathrm{M}^{+}\right], 154$ (27), 149 (100), 136 (26), 83 (27), 81 (28), 71 (44), 69 (43), 57 (35), 55 (27); HRMS (EI): found [M $\left.\mathrm{M}^{+}\right]$298.1193, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}^{+}$ requires 298.1205 .

5,5'-Di-tert-butyl-2,2'-bis-p-benzoquinone ($t \mathrm{Bu}_{2}$-BBQ)

To a mixture of sodium hydride ($178 \mathrm{mg}, 4.40 \mathrm{mmol}$) in DMF (3 mL), a solution of $\mathbf{1 3}(334 \mathrm{mg}, 2.00$
$\mathrm{mmol})$ in DMF (3 mL) was added at room temperature under N_{2}. Then, methyl iodide ($1.36 \mathrm{~g}, 9.60$ mmol) was slowly added to the mixture, and stirred for 4 h at $40^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was quenched by adding excess amount of water dropwise. The aqueous layer was then separated and extracted with diethyl ether. The combined organic layer was washed with brine, dried over sodium sulfate, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexane-ether $=95 / 5$) to yield $14(323 \mathrm{mg}$, 83%) as a yellow liquid. IR (neat): $v=2952,2927,1499,1488,1464,1283,1221,1059,1032 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.89(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{C}(t \mathrm{Bu}) \mathrm{CH}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$; $\left.\mathrm{C}(t \mathrm{Bu}) \mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}\right), 6.79\left(\mathrm{dd}, J=8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CC}\left(\mathrm{OCH}_{3}\right) \mathrm{CHCH}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.77(\mathrm{~s}$, $3 \mathrm{H} ; \mathrm{OCH}_{3}$), $1.36\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.2,152.8,139.8,114.2$, 112.2, 109.7, 55.6, 55.5, 34.9, 29.6 ppm; LRMS (EI): m / z (\%): 194 (56) [$\left.\mathrm{M}^{+}\right], 179$ (100), 164 (36), 151 (36).

To a mixture of CAN $(2.71 \mathrm{~g}, 4.90 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$, a solution of $\mathbf{1 4}(320 \mathrm{mg}, 1.70 \mathrm{mmol})$ in acetonitrile (10 mL) was added dropwise at room temperature. After stirring for 1 h , water (60 mL) was added to the mixture. The mixture was filtered through a glass filter, and the residue was washed with water and then dried over under reduced pressure. The crude product obtained was recrystallized from chloroform / ethanol to yield $\boldsymbol{t} \mathbf{B} \mathbf{u}_{\mathbf{2}}-\mathbf{B B Q}(150 \mathrm{mg}, 56 \%)$ as a yellow crystalline solid. M.p. $194.0-196.0^{\circ} \mathrm{C}$; IR (KBr): $v=2956,2924,1658,1630,1594,1362,1237,914 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.75(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CCHCO}), 6.68(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{C}(t \mathrm{Bu}) \mathrm{CH}), 1.31\left(\mathrm{~s}, 18 \mathrm{H} ; \mathrm{CH}_{3}\right)$ ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=186.6,185.6,156.4,138.0,137.6,131.9,35.3,29.0 \mathrm{ppm}$; LRMS (EI): m/z (\%): 326 (48) [M $\left.{ }^{+}\right], 311$ (56), 285 (36), 284 (87), 283 (34), 269 (100), 201 (48), 41 (40).

Details of DFT calculations and Gaussian archives of optimized structures at the B3LYP/6-31+G* level

DFT calculations were carried out using GAUSSIAN 09 program. ${ }^{1}$ Geometry optimization were performed using standard gradient techniques at the B3LYP level of theory using restricted (RB3LYP) and unrestricted (UB3LYP) methods for closed- and open-shell systems, respectively. ${ }^{2}$ In every case, $6-31+G^{*}$ was used as the basis set, and all ground states were verified by vibration frequency analysis. The calculated molecular structures were visualized by Gauss View 5.0. ${ }^{3}$

The singlet and triplet states of the BBQ dianion, the doublet and quartet states of the trianion, and singlet, triplet, and quintet states of the tetraanion were calculated and summarised in the following Table. BQ dianion and trianion are more stable in singlet and doublet states than in triplet and quartet states, respectively, while BBQ dianion and trianion are more stable in triplet and doublet states than in singlet and quartet states, respectively. Although the BBQ tetraanion had similar energies in singlet and triplet states, the singlet was determined as the most stable state considering that the triplet state was highly spin contaminated.

Species	Spin state	Energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\left\langle\mathrm{S}^{2}\right\rangle$ value $^{\mathrm{a}}$
BQ dianion	singlet	-1001446.2	-
BQ trianion	triplet	-1001326.5	2.082
	doublet	-1000698.6	0.751
BBQ dianion	quartet	-1000623.0	3.822
	singlet	-2000099.7	-
BBQ trianion	triplet	-2000134.6	2.278
	doublet	-1999622.3	1.360
	quartet	-1999553.6	4.089
BBQ tetraanion	singlet	-1998790.5	-
	triplet	-1998789.7	2.598
	quintet	-1998752.0	6.406

${ }^{\text {a }}$ Determined by the HF/6-31+G* level.

BQ

1\1\GINC-HEX\FOpt\RB3LYP\6-31+G(d)\C6H4O2\YOKOJI\10-Aug-2015\0
\#B3LYP/6-31+G* opt=(ReadFC,Maxcycle= 100) NoSymm freq=NoRaman geom=check guess=read\lbqb3+
0,1\C,1.1473960993,0.6385839984,0.0000000008\C,-1.2 $455936404,1.2457168671,0.0000000035 \backslash \mathrm{C},-0.512664242,-1.1884288198,-0.0000000034 \backslash \mathrm{C},-1.6176902387,-0.1937182215,-$ $0.0000000006 \mathrm{IC}, 0.7752942945,-0.8008521598,0 . \mathrm{IC}, 0.0423659446,1.6332890664,-0.0000000026 \mathrm{lH},-2.0720010581,1.95206$ $47157,0.0000000074 \backslash \mathrm{H},-0.8119264774,-2.2335912849,-0.0000000048 \backslash \mathrm{H}, 0.341651651,2.6784450456,-0.0000000088 \backslash \mathrm{O}, 2.32$ $21669073,0.9923242349,0.0000000025 \backslash \mathrm{O},-2.7924601291,-0.5474613541,0 . \backslash \mathrm{H}, 1.6017108891,-1.5071845781,0.0000000059$ \IVersion=EM64L-G09RevC.01\HF=-381.4704834\RMSD=3.710e-09\RMSF=1.597e-04\Dipole=0.0000008,0.0000037,0.\Q uadrupole=-9.3959157,6.969247,2.4266688,-5.4190299,0.,0.\PG=C01 [X(C6H4O2)]\@

BQ anion radical

1\1\GINC-HEX\FOpt\UB3LYP\6-31+G(d)\C6H4O2(1-,2)\YOKOJI\07-Sep-2015\0
B3LYP/6-31+G* opt=(ReadFC,Maxcy cle=100) NoSymm freq=NoRaman geom=check guess=read
bqradanib3+
-1,2\C,1.1701074551,0.6453203105,0.000000 $0002 \backslash C,-1.2465743574,1.1972606258,-0.0000000005 \backslash \mathrm{C},-0.5404529244,-1.1485372011,-0.0000000005 \backslash \mathrm{C},-1.6403988766,-0$. $2004556137,0.000000001 \backslash \mathrm{C}, 0.7762825226,-0.7523958326,0.0000000001 \backslash \mathrm{C}, 0.0701615082,1.5934015139,0.0000000002 \backslash \mathrm{H},-$ $2.0533614742,1.9300581383,-0.0000000004 \backslash \mathrm{H},-0.8087995645,-2.2049257995,-0.0000000005 \backslash \mathrm{H}, 0.3385081895,2.64979014$ $72,-0.0000000005 \backslash \mathrm{O}, 2.3885404091,1.0121158865,0.0000000007 \backslash \mathrm{O},-2.8588325568,-0.567251678,0.0000000007 \backslash \mathrm{H}, 1.58306$ $96694,-1.4851929873,-0.0000000004 \backslash V$ Version=EM64L-G09RevC. $01 \backslash H F=-381.5500259 \backslash$ S2 $=0.761125 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0.7500$ $4 \backslash \mathrm{RMSD}=5.840 \mathrm{e}-09 \backslash \mathrm{RMSF}=4.801 \mathrm{e}-05 \backslash$ Dipole $=0.0000022,0.0000005,0 . \backslash$ Quadrupole $=-17.0104226,8.1357382,8.8746844,-8$. $129647,0 ., 0 . \backslash \mathrm{PG}=\mathrm{CS}[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 4 \mathrm{O} 2)] \backslash \backslash @$

BQ dianion (singlet)

$1 \backslash 1 \backslash G I N C-H E X \backslash F O p t \backslash R B 3 L Y P \backslash 6-31+G(d) \backslash C 6 H 4 O 2(2-) \backslash Y O K O J I \backslash 07-S e p-2015 \backslash 0 \backslash \ B 3 L Y P / 6-31+G^{*}$ opt=(ReadFC,Maxcycl $\mathrm{e}=100$) NoSymm freq=NoRaman geom=check guess=read \backslash bqdianib3+
-2,1\C,1.2060409451, $0.6560230462,0.000000001$ $5 \backslash \mathrm{C},-1.2528691485,1.1589064936,0.0000000013 \backslash \mathrm{C},-0.5671534805,-1.1200526782,-0.0000000006 \backslash \mathrm{C},-1.6763312212,-0.2111$ $611783,0.0000000037 \backslash \mathrm{C}, 0.7825791502,-0.71404129,0.0000000021 \backslash \mathrm{C}, 0.0968597503,1.5649167725,0.0000000004 \backslash \mathrm{H},-2.041$ $7433894,1.919837133,0.0000000022 \backslash \mathrm{H},-0.8051207041,-2.190000515,-0.0000000042 \backslash \mathrm{H}, 0.3348278472,2.6348643575,-0.000$ $0000013 \backslash \mathrm{O}, 2.466028291,1.0351184497,-0.0000000061 \backslash \mathrm{O},-2.9363209113,-0.5902504951,-0.0000000047 \backslash \mathrm{H}, 1.5714528711,-1$. $4749725858,0.0000000058 \backslash \backslash$ Version=EM64L-G09RevC. $01 \backslash \mathrm{HF}=-381.4306621 \backslash \mathrm{RMSD}=2.621 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.335 \mathrm{e}-05 \backslash \mathrm{Dipole}=$ $0.0000002,0.000007,0 . \backslash$ Quadrupole=-26.5357374,10.0961101,16.4396273,-11.7316984,0.,0.\PG=C01 [X(C6H4O2)]

BQ dianion (triplet)

1\1\GINC-HEX\FOpt\UB3LYP\6-31+G(d)\C6H4O2(2-,3)\YOKOJI\07-Sep-2015\0
\#B3LYP/6-31+G* opt=(ReadFC,Maxcy cle=100) NoSymm freq=NoRaman geom=check guess=read\lbqdiani_tb3+
-2,3\C,1.1517051528,0.6398139779,-0.00000 $00037 \backslash \mathrm{C},-1.2504952668,1.2090974392,-0.0000000021 \backslash \mathrm{C},-0.5371206073,-1.1605380364,-0.0000000008 \backslash \mathrm{C},-1.6219724052,-$ $0.1949419362,-0.0000000034 \backslash C, 0.7801736459,-0.7642009423,-0.0000000077 \backslash \mathrm{C}, 0.0668213364,1.6053601848,-0.00000000$ $16 \backslash \mathrm{H},-2.0531257789,1.9492676641,0.0000000039 \backslash \mathrm{H},-0.7978887924,-2.2207948058,0.0000000053 \backslash \mathrm{H}, 0.3275890478,2.6656$ $204715,-0.0000000041 \backslash \mathrm{O}, 2.3794228588,1.0094182017,0.0000000131 \backslash \mathrm{O},-2.8496660064,-0.5645403031,0.0000000041 \backslash \mathrm{H}, 1$. $5828068154,-1.5043744054,-0.0000000029 \backslash \backslash$ Version=EM64L-G09RevC.01 $\backslash \mathrm{HF}=-381.3850578 \backslash \mathrm{~S} 2=2.010858 \backslash \mathrm{~S} 2-1=0 . \mid \mathrm{S} 2 \mathrm{~A}=$ $2.000029 \backslash$ RMSD $=4.382 \mathrm{e}-09 \backslash \mathrm{RMSF}=6.300 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.0006022,0.000176,0$. QQuadrupole $=-9.4420042,-14.5613075,24.003$ 3117,2.0941194,0.,0.\PG=C01 [X(C6H4O2)]
@

$B Q$ radical trianion (doublet)

$1 \backslash 1 \backslash G I N C-I 7 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31+G(d) \backslash C 6 H 4 O 2(3-, 2) \backslash Y O K O J I \backslash 24-S e p-2015 \backslash 0 \backslash \ B 3 L Y P / 6-31+G^{*}$ opt=(ReadFC,Maxcycle $=100)$ NoSymm freq=NoRaman geom=check guess=read
bqradtrianib3+
-3,2\C, 1.1759334645,0.6469238006,-0.000000 $0037 \backslash \mathrm{C},-1.2589570636,1.1787564209,-0.0000000025 \backslash \mathrm{C},-0.5613350778,-1.139927229,-0.0000000013 \backslash \mathrm{C},-1.6462010964,-0.2$ $020868079,-0.0000000027 \backslash \mathrm{C}, 0.7886323578,-0.7338498394,-0.0000000007 \backslash \mathrm{C}, 0.0910377929,1.5847931815,-0.0000000011$ \H,-2.0486933569,1.9375794324,-0.0000000015\H,-0.801197311,-2.2085933933, 0.00000000037\H,0.3308731859,2.6534668 $673,0.0000000096 \backslash \mathrm{O}, 2.4515378956,1.0306295218,-0.0000000046 \backslash \mathrm{O},-2.921783745,-0.5858559938,0.0000000007 \backslash \mathrm{H}, 1.5784$ $029539,-1.4926484511,0.0000000042 \backslash V e r s i o n=E M 64 L-G 09 R e v C .01 \backslash H F=-381.1459255 \backslash S 2=0.750385 \backslash S 2-1=0 . \ S 2 A=0.75 \backslash R$ $\mathrm{MSD}=6.496 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.409 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.0008225,-0.0000944,0 . \backslash \mathrm{Quadrupole}=-19.332406,-14.5575759,33.8899819,-1.0$ 103823,0.,0.\PG=C01 [X(C6H4O2)]
@

BQ trianion (quartet)

$1 \backslash 1 \backslash G I N C-I 7 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31+G(d) \backslash C 6 H 4 O 2(3-, 4) \backslash Y O K O J I \backslash 24-S e p-2015 \backslash 0 \backslash \$ \#B3LYP/6-31+G* opt=(ReadFC,Maxcycle $=100)$ NoSymm freq=NoRaman geom=check guess=read\lbqtriani_qb3+
-3,4\C,1.1465935269,0.6375382051, 0.0005394
$374 \backslash C,-1.2518446907,1.2151280769,0.0000604907 \backslash \mathrm{C},-0.5361929961,-1.1660233197,-0.0004491558 \backslash \mathrm{C},-1.6168881742,-0.19$ $27050116,-0.0005580095 \backslash \mathrm{C}, 0.7815707376,-0.7702772742,0.0001821872 \backslash \mathrm{C}, 0.0659073767,1.6109034044,0.0007657824 \backslash \mathrm{H},-$ $2.0462786929,1.9631124019,-0.0000934307 \backslash \mathrm{H},-0.7868316804,-2.228014512,-0.0007447715 \backslash Н, 0.3165371537,2.672899725$ $1,0.0004527883 \backslash \mathrm{O}, 2.3805113446,1.0084339042,0.0007273884 \backslash \mathrm{O},-2.8508343641,-0.5635454061,-0.0012267105 \backslash \mathrm{H}, 1.57600$ $04589,-1.518258194,0.0003440037 \backslash \backslash$ Version=EM64L-G09RevC. $01 \backslash \mathrm{HF}=-381.1171206$ IS2 $=3.760769 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=3.750024$ \backslash RMSD $=9.435 \mathrm{e}-09 \backslash \mathrm{RMSF}=2.076 \mathrm{e}-05 \backslash$ Dipole $=-0.0003198,-0.0000959,-0.00115 \backslash \mathrm{Quadrupole}=-5.8660167,-34.7434279,40.60$ 94447,10.1303205,-0.0116159,-0.0205312\PG=C01 [X(C6H4O2)]
@

BBQ

$1 \backslash 1 \backslash G I N C-H E X \backslash F O p t \backslash R B 3 L Y P \backslash 6-31+G(d) \backslash C 12 H 6 O 4 \backslash Y O K O J I \backslash 12-J u n-2014 \backslash 0 \backslash \$ \#B3LYP/6-31+G* opt=(ReadFC,Maxcycle= 100) NoSymm freq=NoRaman geom=check guess=read
bbqb3+
0,1\C,-1.2778582671,-1.4267324274,0.4361316144\C,-$3.5932714274,-0.6508160007,0.0264002517 \backslash \mathrm{C},-1.6022139124,0.8575889265,-0.4311019121 \backslash \mathrm{C},-3.0712339914,0.65507421$ $93,-0.4414232863 \backslash C,-0.7317500355,-0.1032558785,-0.0381814097 \backslash \mathrm{C},-2.7508698711,-1.6163630807,0.4284331341 \backslash H,-1.27$ $00518354,1.8306300507,-0.7749048935 \backslash \mathrm{H},-3.0920156125,-2.5870845395,0.7778938327 \backslash \mathrm{O},-0.5487332502,-2.3290135418$, $0.831570026 \backslash \mathrm{O},-3.8252386423,1.5407150279,-0.8337297144 \backslash \mathrm{H},-4.6728577919,-0.7740987873,0.0189141313 \backslash \mathrm{C}, 3.0712338$ $981,-0.6550740049,-0.4414242718 \backslash \mathrm{C}, 0.7317500293,0.1032558913,-0.0381815187 \backslash \mathrm{C}, 2.7508699601,1.6163628783,0.428433$ $3068 \backslash C, 1.2778583585,1.4267322155,0.436132027 \backslash \mathrm{C}, 3.5932714312,0.6508159938,0.0263997755 \backslash \mathrm{C}, 1.6022138223,-0.85758$ $87245,-0.4311026702 \backslash H, 3.0920157774,2.5870841691,0.7778943972 \backslash \mathrm{H}, 1.2700516728,-1.8306296847,-0.7749060479 \backslash \mathrm{O}, 3.8$ $252384678,-1.5407146211,-0.8337312928 \backslash \mathrm{O}, 0.5487334258,2.329013131,0.8315710445 \backslash \mathrm{H}, 4.6728577939,0.7740987877,0.0$ $18913476 \backslash \backslash$ Version=EM64L-G09RevC.01\HF=-761.742748\RMSD=6.903e-09\RMSF=2.699e-06\Dipole=0., $0 ., 0.0415335 \backslash \mathrm{Q}$ uadrupole $=3.0018799,-4.9835492,1.9816693,16.7248217,0.0000039,-0.0000035 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 12 \mathrm{H} 6 \mathrm{O} 4)] \backslash \backslash$

BBQ anion radical

$1 \backslash 1 \backslash G I N C-H E X \backslash F O p t \backslash U B 3 L Y P \backslash 6-31+G(d) \backslash C 12 H 6 O 4(1-, 2) \backslash Y O K O J I \backslash 12-J u n-2014 \backslash 0 \backslash \ \# B 3 L Y P / 6-31+G^{*}$ opt=(ReadFC,Maxc ycle=100) NoSymm freq=NoRaman geom=check guess=read $\backslash \backslash b b q r a d a n i b 3+\backslash \backslash-1,2 \backslash C,-1.2585144815,-1.4673858664,0.329$ $5123518 \backslash \mathrm{C},-3.5747921519,-0.6318463078,0.0269395058 \backslash \mathrm{C},-1.6330455883,0.882427057,-0.331957872 \backslash \mathrm{C},-3.0705603905,0$. $6980890418,-0.3485093217 \backslash \mathrm{C},-0.7244018479,-0.1165374765,-0.0304275964 \backslash \mathrm{C},-2.7242339941,-1.6331054684,0.341691391$ \Н,-1.2876360973,1.8755217011,-0.5887735852\Н,-3.0709169042,-2.6275520533, $0.6146420435 \backslash \mathrm{O},-0.5468158108,-2.4382$ $2992,0.6386828011 \backslash \mathrm{O},-3.8653397769,1.610626389,-0.6787163803 \backslash \mathrm{H},-4.6551040822,-0.7647790775,0.0269144395 \backslash \mathrm{C}, 3.070$ $5605998,-0.6980890962,-0.3485086705 \backslash \mathrm{C}, 0.7244020481,0.1165373891,-0.0304275161 \backslash \mathrm{C}, 2.7242337216,1.6331054991,0.34$ $16917827 \backslash \mathrm{C}, 1.2585142377,1.4673858553,0.3295123638 \backslash \mathrm{C}, 3.5747919957,0.6318463987,0.0269401689 \backslash \mathrm{C}, 1.6330459295,-0$. $8824271656,-0.3319575022 \backslash \mathrm{H}, 3.0709165321,2.6275521259,0.6146424294 \backslash \mathrm{H}, 1.287636588,-1.8755218653,-0.5887731975$ \O,3.8653402742,-1.6106263761,-0.6787154101\O, $0.5468152842,2.4382298955,0.6386824182 \backslash H, 4.6551039147,0.7647793$ $208,0.0269153563 \backslash$ Version=EM64L-G09RevC. $01 \backslash H F=-761.8470123 \backslash \mathrm{~S} 2=0.770726 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0.750203 \backslash \mathrm{RMSD}=5.461 \mathrm{e}-$ $09 \backslash \mathrm{RMSF}=1.914 \mathrm{e}-06 \backslash$ Dipole $=-0.0000018,-0.0000004,0.1935648 \backslash$ Quadrupole $=-14.0494731,-2.0548402,16.1043133,19.1016$ 06,-0.000003,0.0000029\PG=C01 [X(C12H6O4)]
@

BBQ dianion (singlet)

1\1\GINC-HEXIFOpt\RB3LYP\6-31+G(d)\C12H6O4(2-)\YOKOJI\12-Jun-2014\0
\#B3LYP/6-31+G* opt=(CalcFC,Maxcyc le=100) NoSymm freq=NoRaman geom=check guess=read
bbqdiani_sb3+
-2,1\C,-1.2495756318,-1.4986003841,0.2213 $382639 \backslash \mathrm{C},-3.5676619366,-0.6127674767,0.0473699671 \backslash \mathrm{C},-1.665904756,0.8981794996,-0.2603430762 \backslash \mathrm{C},-3.0872454416,0$. $7315898072,-0.2643001902 \backslash \mathrm{C},-0.7233088325,-0.1271184099,-0.0422303632 \backslash \mathrm{C},-2.7056199132,-1.6414525824,0.280357706$ $7 \backslash \mathrm{H},-1.3071095909,1.9020696644,-0.4418755316 \backslash \mathrm{H},-3.0584530652,-2.6502695869,0.4971730927 \backslash \mathrm{O},-0.548198019,-2.5285$ $388873,0.4154036359 \backslash \mathrm{O},-3.9225344585,1.6660807464,-0.525783855 \backslash \mathrm{H},-4.6496882494,-0.7576217608,0.0694310953 \backslash \mathrm{C}, 3.0$ $87325577,-0.731656962,-0.2631720628 \backslash C, 0.7233219275,0.1271083688,-0.0420413817 \backslash \mathrm{C}, 2.7055348726,1.6415237519,0.28$ $07681309 \backslash C, 1.2495084574,1.498656885,0.2213407273 \backslash C, 3.5676473773,0.6127792531,0.0483036658 \backslash C, 1.6659837043,-0.8$ $982451374,-0.2596069785 \backslash \mathrm{H}, 3.0583023939,2.6503953434,0.4974361296 \backslash \mathrm{H}, 1.3072428039,-1.902180638,-0.4409956269 \backslash \mathrm{O}$, $3.9226939096,-1.6662145503,-0.5241635154 \backslash \mathrm{O}, 0.5480718568,2.5286443166,0.4149325839 \backslash \mathrm{H}, 4.6496670144,0.757638739$
$4,0.0706575824 \backslash \backslash$ Version=EM64L-G09RevC. $01 \backslash \mathrm{HF}=-761.7976553 \backslash \mathrm{RMSD}=2.897 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.408 \mathrm{e}-06 \backslash \mathrm{Dipole}=-0.000050$ $4,0.0000422,0.3337398 \backslash$ Quadrupole $=-33.0328518,0.7610427,32.2718091,22.5885661,-0.0128397,0.0074347 \backslash \mathrm{PG}=\mathrm{C} 01 \quad$ [X(C 12H6O4)]
@

BBQ dianion (triplet)

$1 \backslash 1 \backslash G I N C-H E X \backslash F O p t \backslash U B 3 L Y P \backslash 6-31+G(d) \backslash C 12 H 6 O 4(2-, 3) \backslash Y O K O J I \backslash 12-J u n-2014 \backslash 0 \backslash \# B 3 L Y P / 6-31+G^{*}$ opt=(ReadFC,Maxc ycle=100) NoSymm freq=NoRaman geom=check guess=read
bbqdiani_tb3+
-2,3\C,-1.3258715512,-1.0347011127,1.030 4103049\C,-3.5446631596,-0.6070129483,-0.0136795176\C,-1.5394365194,0.4558584498,-0.9240795707\C,-2.975065382, $0.2627335761,-1.0193718036 \backslash C,-0.7372796096,-0.12742625,0.0352309775 \backslash \mathrm{C},-2.7648495522,-1.210422278,0.9459969114$ \Н,-1.0942372801,1.1204710879,-1.663504999\Н,-3.2045837273,-1.8743365846,1.6916141165\О,-0.639969088,-1.662844 $9436,1.8934913871 \backslash О,-3.6862381957,0.8204962627,-1.924442379 \backslash Н,-4.6232213382,-0.7691712374,-0.0516736792 \backslash \mathrm{C}, 2.97$ 50660583,-0.262733432,-1.0193699972\C,0.7372796172,0.1274260559,0.0352314807\C,2.7648489209,1.2104221918,0.94 59987501\C, 1.3258708885,1.0347008597,1.0304112614\C,3.5446631432,0.6070131063,-0.013677319\C,1.53943715,-0.45 $58584297,-0.9240786687 \backslash H, 3.204582575,1.874336504,1.6916162582 \backslash H, 1.0942384003,-1.1204709252,-1.663504522 \backslash \mathrm{O}, 3.6$ $862394819,-0.8204959817,-1.9244401648 \backslash \mathrm{O}, 0.6399678509,1.6628444686,1.8934920499 \backslash Н, 4.6232213171,0.7691715604,-0$ $051670877 \backslash \backslash$ Version $=$ EM64L-G09RevC.01 \HF=-761.8109459\S2=2.021559\S2-1 $=0 . \ S 2 A=2.000233 \backslash R M S D=9.051 \mathrm{e}-09 \backslash \mathrm{RM}$ $\mathrm{SF}=3.493 \mathrm{e}-06 \backslash$ Dipole=-0.0000002,0.,0.5073304\Quadrupole=-25.9708775,20.3556857,5.6151918,7.7762014,-0.0000092,0.0 $000041 \backslash \mathrm{PG}=\mathrm{C} 01$ [X(C12H6O4)]
@

BBQ radical trianion (doublet)

$1 \backslash 1 \backslash G I N C-H E X \backslash F O p t \backslash U B 3 L Y P \backslash 6-31+G(d) \backslash C 12 H 6 O 4(3-, 2) \backslash Y O K O J I \backslash 12-J u n-2014 \backslash 0 \backslash \ B 3 L Y P / 6-31+G *$ opt=(ReadFC,Maxc ycle=100) NoSymm freq=NoRaman geom=check guess=read
bbqradtrianib3+
-3,2\C,-1.256072923,-1.4807978561, 0.42 48186724\C,-3.5537288613,-0.6072436752,-0.0552327445\C,-1.6537937136,0.8577107886,-0.3135345976\C,-3.074889599 $6,0.7000816849,-0.4218240357 \backslash \mathrm{C},-0.7305694082,-0.1456219035,0.0590220951 \backslash \mathrm{C},-2.6920538729,-1.6193755417,0.346855$ $7947 \backslash \mathrm{H},-1.2612500439,1.8445720016,-0.5394508919 \backslash \mathrm{H},-3.0806170153,-2.6056100772,0.62014438 \backslash \mathrm{O},-0.5452388681,-2.48$ $10256276,0.8178273305 \backslash \mathrm{O},-3.8880000752,1.6407010305,-0.8268030191 \backslash Н,-4.6344904314,-0.781851115,-0.1118256021 \backslash \mathrm{C}$, $3.074889702,-0.7000817351,-0.4218234483 \backslash C, 0.7305694783,0.1456219712,0.0590222453 \backslash C, 2.6920537407,1.6193755048$, $0.3468564383 \backslash C, 1.2560728089,1.4807979142,0.4248189048 \backslash \mathrm{C}, 3.5537288352,0.6072436098,-0.055231944 \backslash \mathrm{C}, 1.653793857$ $4,-0.8577107738,-0.3135343365 \backslash \mathrm{H}, 3.0806168876,2.6056100186,0.6201451212 \backslash \mathrm{H}, 1.2612502161,-1.8445719604,-0.5394508$ $111 \backslash \mathrm{O}, 3.8880003193,-1.640701099,-0.8268022957 \backslash \mathrm{O}, 0.5452385453,2.4810257649,0.8178272531 \backslash \mathrm{H}, 4.6344904217,0.78185$ 10755,-0.111824509
Version=EM64L-G09RevC.01\HF=-761.6157972\S2=0.768778\S2-1=0.\S2A=0.750205\RMSD=8.474 e-09\RMSF=2.784e-06\Dipole=-0.0000019,-0.0000004,0.3268645\Quadrupole=-49.2702799,5.9054319,43.364848,21.0406 65,-0.0000072,0.0000001\PG=C01 [X(C12H6O4)]
@

BBQ trianion (quartet)

$1 \backslash 1 \backslash G I N C-H E X \backslash F O p t \backslash U B 3 L Y P \backslash 6-31+G(d) \backslash C 12 H 6 O 4(3-, 4) \backslash Y O K O J I \backslash 17-J u n-2014 \backslash 0 \backslash \$ B3LYP/6-31+G* opt=(ReadFC,Maxc ycle=100) NoSymm freq=NoRaman scf=xqc geom=check guess=read
bbqtriani_qb3+
-3,4\C,-1.2842671189,-1.4051815 606,-0.6060173101\C,-3.5458451484,-0.6334066644,0.0858514723\C,-1.5995559077,0.8087176347,0.435200155\C,-3.029 $1632316,0.6269466423,0.5764245278 \backslash C,-0.7356827313,-0.1324022159,-0.1002233141 \backslash \mathrm{C},-2.7205192325,-1.5818598722,-0$. $4698280489 \backslash \mathrm{H},-1.1985191344,1.7562671575,0.7869898712 \backslash \mathrm{H},-3.1347058875,-2.5215159617,-0.8395474335 \backslash \mathrm{O},-0.5727530$ $962,-2.3124873439,-1.1477562906 \backslash \mathrm{O},-3.7836940096,1.5174783662,1.1121725234 \backslash \mathrm{H},-4.6191213913,-0.817558773,0.16655$ 9936\C,3.0291615906,-0.6269462465,0.5764587169\C, $0.735685319,0.132395031,-0.1002095913 \backslash C, 2.7205187002,1.58186$ $57442,-0.4697860907 \backslash \mathrm{C}, 1.284269886,1.4051791028,-0.6059933114 \backslash \mathrm{C}, 3.5458418615,0.6334130493,0.0858988385 \backslash \mathrm{C}, 1.599$ $5569216,-0.808724409,0.4352177817 \backslash \mathrm{H}, 3.1347050507,2.5215252624,-0.8394964783 \backslash Н, 1.1985211688,-1.7562788881,0.78$ 69949815\О,3.7836927431,-1.5174772269,1.1122082172\O,0.5727572501,2.3124813694,-1.1477396286\Н,4.6191163978,0. 8175698022,0.1666204761
Version=EM64L-G09RevC.01\HF=-761.5896338\S2=3.770541\S2-1=0.\S2A=3.750158\RMSD $=5.488 \mathrm{e}-07 \backslash \mathrm{RMSF}=3.439 \mathrm{e}-05 \backslash$ Dipole $=-0.0000024,-0.0000033,0.6381637 \backslash \mathrm{Quadrupole}=-81.1018574,19.618495,61.4833625,-$ $23.7080612,-0.0009921,-0.000295 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 12 \mathrm{H} 6 \mathrm{O} 4)] \backslash \$

BBQ tetraanion (signlet)

1\1\GINC-HEX\FOpt|RB3LYP\6-31+G(d)\C12H6O4(4-)\YOKOJI\16-Jun-2014\O
\#B3LYP/6-31+G* opt=(ReadFC,Maxcy cle=100) NoSymm freq=NoRaman scf=xqc geom=check guess=read \lbbqtetraanib3+
-4,1\C,-1.3158815861,-1.30350600 $61,0.8745945234 \backslash \mathrm{C},-3.532418039,-0.6331056249,-0.1363302079 \backslash \mathrm{C},-1.5893838612,0.6660062056,-0.6155060674 \backslash \mathrm{C},-3.0031$ $653406,0.4924983054,-0.8295389648 \backslash C,-0.7451874462,-0.1574182512,0.1576396787 \backslash \mathrm{C},-2.7287418197,-1.4681381578,0.6$ $728848325 \backslash \mathrm{H},-1.1287456698,1.5178645905,-1.1220294858 \backslash \mathrm{H},-3.1837422558,-2.336773485,1.1687691311 \backslash \mathrm{O},-0.642246323$ $6,-2.1220309819,1.6416649036 \backslash \mathrm{O},-3.7357929631,1.2944304007,-1.6014723876 \backslash \mathrm{H},-4.6140459882,-0.8206688787,-0.21062$ 27685\C,3.0031623435,-0.4925004681,-0.8295483905\C,0.7451879769,0.1574187701,0.1576364636\C,2.7287441939,1.46 81400442,0.6728710926\C,1.3158848589,1.3035079014,0.8745868904\C,3.5324175028,0.6331052917,-0.1363444837\C,1. $5893815907,-0.6660077082,-0.6155101862 \backslash \mathrm{H}, 3.183746406,2.3367769366,1.1687510771 \backslash \mathrm{H}, 1.1287415366,-1.5178672212,-$ $1.1220299982 \backslash \mathrm{O}, 3.7357872108,-1.2944344648,-1.6014824544 \backslash \mathrm{O}, 0.6422525711,2.1220340307,1.641658677 \backslash \mathrm{H}, 4.614045102$ $3,0.8206687708,-0.210641875 \backslash \ V e r s i o n=E M 64 L-G 09 R e v C .01 \backslash H F=-761.2989724 \backslash$ RMSD $=4.016 \mathrm{e}-09 \backslash$ RMSF=4.539e-06\Dip ole $=-0.0000001,0.0000002,0.180132 \backslash$ Quadrupole $=-66.6988359,28.2781056,38.4207304,3.2724201,0.0001762,0.0000013 \backslash \mathrm{P}$ G=C01 [X(C12H6O4)]\@

BBQ tetraanion (triplet)

1\1\GINC-HEXTFOptlUB3LYP\6-31+G(d)\C12H6O4(4-,3)\YOKOJI\19-Jun-2014\0
\#B3LYP/6-31+G* opt=(CalcFC,Maxc ycle=100) NoSymm freq=NoRaman scf=xqc geom=check guess=read\lbbqtetraani_tb3+l\-4,3\C,-1.2734713324,-1.53934 $93684,0.0033267464 \backslash \mathrm{C},-3.590627229,-0.6119734496,0.0048424361 \backslash \mathrm{C},-1.6999291012,0.9014650636,0.0010233927 \backslash \mathrm{C},-3.12$ $33706761,0.7518266013,0.0026712716 \mathrm{IC},-0.7351071286,-0.1502141051,0.0010623659 \backslash \mathrm{C},-2.7137372459,-1.6830613331,0$. $0054381154 \backslash \mathrm{H},-1.3185397769,1.9152733109,-0.0003225933 \backslash \mathrm{H},-3.093640016,-2.7070756421,0.0072607166 \backslash \mathrm{O},-0.56993745$ $42,-2.6251415142,0.003606555 \backslash \mathrm{O},-3.9653492816,1.7622527222,0.0022507977 \backslash \mathrm{H},-4.6710914604,-0.793271028,0.00628530$ 92\C,3.1234396256,-0.7518288444,-0.0045526817\C,0.7351282461,0.1501901297,-0.001218827\C,2.7136503186,1.683055 7987,-0.0035609879\C,1.2734013615,1.5393352363,-0.0018669063\C,3.5906041639,0.6119910936,-0.0049341399\C,1.700 $0153728,-0.9014706728,-0.0025961448 \backslash \mathrm{H}, 3.0935318762,2.7070888662,-0.0038129616 \mathrm{LH}, 1.3186927956,-1.9153012486,-0$. 0020326426\O,3.9654694232,-1.762247446,-0.0058600534\O,0.5698023984,2.6251112063,-0.0005612992\H,4.671065120 $4,0.7933446235,-0.0064484689$ \Version=EM64L-G09RevC.01\HF=-761.2986676\S2=2.022721 \S2-1=0. $\mathrm{IS} 2 \mathrm{~A}=2.000187 \mathrm{~V}$ MSD=9.681e-09\RMSF=1.545e-05\Dipole=0.0008642,0.0008478,-0.0023441\Quadrupole=-102.6508154,10.4564442,92.19 43711,-21.8329575,0.2587467,0.0717221\PG=C01 [X(C12H6O4)]\@

BBQ tetraanion (quintet)

1\1\GINC-HEX\FOptlUB3LYP\6-31+G(d)\C12H6O4(4-,5)\YOKOJI\26-Dec-201410
\#B3LYP/6-31+G* opt=(ReadFC,Max cycle=100) NoSymm freq=NoRaman scf=xqc geom=check guess=read\lbbqtetraani_qub3+
-4,5\C,-1.2933177273,-1.394 $5278716,-0.6371311391 \backslash \mathrm{C},-3.5599124684,-0.6404868713,0.0841121338$ \C,-1.6019532903,0.7936590894,0.4541259933\C,$3.03313509,0.6131201025,0.5877373773 \backslash \mathrm{C},-0.7374064256,-0.136612997,-0.1018949959 \backslash \mathrm{C},-2.7292916921,-1.5817515962,-$ $0.477118843 \backslash \mathrm{H},-1.1993911149,1.7342876322,0.8255850801 \backslash \mathrm{H},-3.1517758884,-2.5183974536,-0.8455260193 \backslash \mathrm{O},-0.5862809$ $126,-2.2826843206,-1.2202463807 \backslash \mathrm{O},-3.7808157637,1.509185332,1.1341765195 \backslash \mathrm{H},-4.6304686621,-0.8375760675,0.16502$ 93996\C,3.0316271257,-0.6125883409,0.5959692105\C,0.7376591111,0.1365338264,-0.100151927\C,2.7305022728,1.581 3236531,-0.4716345174\C,1.2949361644,1.3939582249,-0.6351207027\C,3.5596886419,0.6405617503,0.0925523182\C,1. $6007860499,-0.7932409899,0.4588999543 \backslash \mathrm{H}, 3.1539266631,2.5176326202,-0.8398188142 \backslash \mathrm{H}, 1.1972797877,-1.733530596,0$ 8301918053\O,3.7779198473,-1.5081708285,1.1450906158\O, $0.5893845299,2.281589938,-1.2208284544 \backslash \mathrm{H}, 4.6300388416$, $0.8377157641,0.1760013858$ \VVersion=EM64L-G09RevC. $01 \backslash H F=-761.2843424$ \S2 $2=6.020381$ IS2-1 $=0.1$ S $2 \mathrm{~A}=6.000126$ VRMS $\mathrm{D}=3.539 \mathrm{e}-09 \backslash \mathrm{RMSF}=5.177 \mathrm{e}-06 \backslash \mathrm{Dipole}=-0.0012267,0.0004061,0.9345762 \backslash \mathrm{Quadrupole}=-131.7106807,36.654948,95.055732$ 7,-52.9685106,-0.2627032,-0.0405227\PG=C01 [X(C12H6O4)]
@

Solubility study of BBQ derivatives

The solubilities of BBQ derivatives were measured for the non-substituted BBQ and $\mathrm{R}_{2}-\mathrm{BBQ}(\mathrm{R}=\mathrm{F}$, $\mathrm{Cl}, \mathrm{Br}, \mathrm{Me}, n \mathrm{Bu}$, and OMe) using tetraglyme as the electrolyte solution. The obtained solubilities and the related battery performance are summarized in the following table.

Solubility of the BBQs in tetraglyme and the related battery perormance.

Sample	Solubility in tetraglyme $\left(\mathrm{g} \mathrm{L}^{-1}\right)$	Capacity retention ${ }^{\mathrm{a}}(\%)$
BBQ	$4.0-5.0$	67
$\mathrm{~F}_{2}-\mathrm{BBQ}$	$18-19$	12
$\mathrm{Cl}_{2}-\mathrm{BBQ}$	$9.0-10$	68
$\mathrm{Br}_{2}-\mathrm{BBQ}$	$3.0-4.0$	$>99^{\mathrm{b}}$
$\mathrm{Me}_{2}-\mathrm{BBQ}$	$7.0-8.0$	46
$n \mathrm{Bu}_{2}-\mathrm{BBQ}$	>23	37
$(\mathrm{OMe})_{2}-\mathrm{BBQ}$	<1.0	60
${ }^{\text {a }}$ Ratio of the 20th capacity to the 1st value. ${ }^{\text {b }}$ The capacity was rapidly decreased at around 25th cycle.		

Experimental method for solubility measurement

R_{2} - $\mathrm{BBQ}\left(0.5 \mathrm{mg}\right.$) was added to tetraglyme $(0.5 \mathrm{~mL})$, and the mixture was stirred at $20{ }^{\circ} \mathrm{C}$ for 5 min . The addition of $0.5 \mathrm{mg} \mathrm{R}_{2}-\mathrm{BBQ}$ and stirring of the mixture were repeated, until undissolved $\mathrm{R}_{2}-\mathrm{BBQ}$ remained after the stirring.

References

1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.
2 W. J. Hehre, L. Radom, P. V. R. Schleyer and P. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1986.

3 R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, KS, 2009.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of compounds involved in this study

$\mathrm{Cl}_{2}-\mathrm{BBQ}$

${ }_{109 \cdot}^{2 v g}=$

0
56.9

$980 \cdot 6 \mathrm{Z} \quad$ ——
$662 \cdot 9 \varepsilon$ -
\qquad
६9६.99t -

