Electronic Supplementary Information for

Solvent-directed Solgel Assembly of 3-dimensional Graphenetented Metal Oxides and Strong Synergistic Disparities in Lithium Storage

Jianchao Ye^{†a}, Yonghao An^{†ab}, Elizabeth Montalvo^a, Patrick G. Campbell^a, Marcus A. Worsley^a, Ich C. Tran^a, Yuanyue Liu^{ac}, Brandon C. Wood^a, Juergen Biener^a, Hanqing Jiang^c, Ming Tang^d, Y. Morris Wang^{ab*}

^aPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States

^bSchool for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85286, United States

^cNational Renewable Energy Laboratory, Golden, CO 80401, United States

^dDepartment of Materials Science and Nano-Engineering, Rice University, Houston, TX 77005, United States

The corresponding author: ymwang@llnl.gov

Table of Contents

Spherical-cap model

Graphene surface coverage during the lithiation

Table S1

Figures S1-S12

References

Spherical-cap model

Based on our TEM measurements, we find that the average diameter of the nanoparticles in the lithiation state increases by a factor of 2.5 compared to that in the delithiated state. As the volume of a spherical particle is given by $V=4/3\pi(D/2)^3$, where D is the particle size (i.e., diameter) measured under TEM. This would project a volume expansion of nearly 1560%, which is unlikely. We recognize, however, that the Fe₂O₃ nanoparticles are nucleated on and thus interfaced with the graphene, which most likely adopt a spherical-cap shape with a height (h) and the base diameter (2a) (see the left-hand side scheme); the ratio of h/a defines the particle shape; i.e., h/a=1 (hemisphere); h/a=2 (sphere). The volume of the spherical-cap is given by $V = \frac{\pi h}{6} (3a^2 + h^2)$. After the lithiation, the height and base radius become h' and

a'. Assuming a volume expansion of ~96% for Fe_2O_3 ,¹ we numerically solve h' based on the measured 2a and 2a' from TEM. **Fig. S11** shows the calculation results. In all the cases, we observe a reduction of height during the lithiation; i.e., nanoparticles

preferentially spread over the graphene surface during the lithiation process. The calculation is the basis of the schematic presentation in the main figure, Fig. 4D.

Graphene surface coverage during the lithiation

To estimate the graphene surface area that is covered by the lithiated Fe_2O_3 particles in a graphene/ γ -Fe₂O₃ hybrid electrode sample with 56 wt.% Fe₂O₃ load, we make the following assumptions:

1) Uniform particle sizes.

2) Pristine Fe₂O₃ particles have a hemispherical shape.

3) After lithiation, the contact area between particles and graphene sheets is circular.

4) Graphene surface is flat.

The following parameters are employed in our calculations:

 γ -Fe₂O₃ density: $\rho_{FO} = 4.89 \text{ g/cm}^3$

pristine Fe₂O₃ particle size: $d_{FO} = 8.1$ nm (from TEM)

lithiated Fe₂O₃ particle size: $D_{FO} = 20.6$ nm (from TEM)

specific surface area of GMA: $a_{GMA} = 1500 \text{ m}^2/\text{g}$

weight fraction of Fe_2O_3 in the hybrid sample: f = 0.56.

The number of Fe_2O_3 particles in 1 g of graphene/ γ -Fe₂O₃ hybrid is

$$N_{FO} = \frac{f}{\Gamma_{FO}(1/12)\rho d_{FO}^3} = 8.2 \times 10^{17}$$

After full lithiation, the graphene surface area covered by a Fe_2O_3 is

$$a_{FO} = \rho D_{FO}^2 / 4 = 333 \text{ nm}^2$$

The surface area covered by all Fe₂O₃ particles is

$$A_{FO} = N_{FO} a_{FO} = 270 \text{ m}^2$$

On the other hand, the total graphene surface area per gram of the composite is

$$A_{GMA} = (1 - f)a_{GMA} = 660 \text{ m}^2$$

The graphene surface coverage by the lithiated Fe₂O₃ particles is thus $\Gamma = A_{FO}/A_{GMA} = 41\%$.

If assuming the ratio of particle sizes in the lithiated and delithiated states is a constant, i.e., $D_{FO}/d_{FO} = \lambda$, one has

$$G = \frac{3f/^2}{(1-f)a_{GMA}r_{FO}d_{FO}} \mu \frac{1}{d_{FO}}$$

i.e., the surface coverage is inversely proportional to the particle size.

Sample (wt. %)	PristineLithiated Particle Particle		Recipe for electrode	Thickness	Performance
	Size	Size			
$\alpha + \gamma - Fe_2O_3$ /graphene	~15 nm	$48.9 \pm$	No carbon	250 µm	853 mAh/g @ 100 mA/g
(56%)		14.6 nm	additive, no		after 30 cycles (based on
			binder		hybrid)
$\alpha + \gamma - Fe_2O_3$ /graphene	$12.5 \pm$		No carbon	250 µm	1166 mAh/g @ 100 mA/g
(40%)	5.5 nm		additive,		after 30 cycles (based on
			no binder		hybrid)
γ -Fe ₂ O ₃ /graphene	8.1 ±	$20.6 \pm$	No carbon	250 µm	880 mAh/g @ 100 mA/g
(56%)	1.2 nm	7.5 nm	additive,		(based on hybrid)
			no binder		

Table S1. A summary of our sample information and electrochemical performances of
graphene/Fe2O3 as anodes for Lithium-ion batteries.

Fig. S1. Raman spectra of the 3D graphene and a Fe₂O₃/graphene hybrid sample (containing both α - and γ -Fe₂O₃).

Fig. S2. (A) Nitrogen adsorption/desorption isotherms and (B) pore size distribution for Fe_2O_3 /graphene nanocomposites.

Fig. S3. XRD patterns of two representative Fe₂O₃/graphene and one SnO₂/graphene samples. One contains α - and γ -Fe₂O₃ phases, and the other has 100% γ -Fe₂O₃. The peaks are indexed according to JCPDS cards: PDF#00-033-0664 and PDF#00-039-1346.

Fig. S4. An additional TEM image of $(\alpha + \gamma)$ -Fe₂O₃/graphene (40 wt.%), indicating the faceted nature of as-grown particles as manifested by the rather straight edges in 2D projection.

Fig. S5. A comparison of simulated Li_2O (cubic) diffraction patterns along <100> zone axis with the FFT pattern (inset) from our experiments. A good match is found. The simulation was performed using the online version of WebEMAPS software.²

Fig. S6. A bright-field TEM image of the lithiated $(\alpha+\gamma)$ -Fe₂O₃/graphene (40 wt.%) after 30 cycles, showing a partially lithiated particle.

Fig. S7. Microstructure of $(\alpha+\gamma)$ -Fe₂O₃/graphene (40 wt.%) after 30 cycles. The final state of the sample is charged to 3V (i.e., delithiated). (**A**) A TEM image of Fe₂O₃/graphene, showing the faceted characteristics of particles. (**B**) A high-resolution TEM of a selected particle. (**C**) The particle size distribution from the count of 101 particles. The fitting by log-normal distribution yields an average particle size of 12.7±7.0 nm.

Fig. S8. Selected area diffraction (SAD) pattern taken from a $(\alpha+\gamma)$ -Fe₂O₃/graphene (40 wt.%) sample after 30 cycles and charged to the delithiated state (3.0V). The as-synthesized sample contains both α - and γ -Fe₂O₃.

Fig. S9. Bright-field TEM images of γ -Fe₂O₃/graphene (56 wt.%) in (**A**) the as-synthesized state, and (**B**) the lithiated state after 5 cycles. The particle sizes reported in Table 2 are measured from a series of TEM images similar to the ones shown above. The average particle sizes for the as-synthesized γ -Fe₂O₃ and the lithiated state are 8.1 ± 1.2 nm (from 100 counts) and 20.6 ±7.5 nm (from 134 counts), respectively.

Fig. S10. The calculated ratio change (h'/a') after the lithiation, as a function of the initial particle shape defined by h/a (see Spherical-cap model section for the details). The blue dashed line denotes $\frac{h'/a'}{h/a} = 1$ (i.e., uniform expansion line). Note the substantial reduction of h'/a' after the lithiation, suggestive of "pancake" shape-change behavior. The calculation parameters are 2a=8.1 nm, and 2a'=20.6 nm, both of which are measured by TEM (see Table 2, γ -Fe₂O₃ and Fig. S10). The volume expansion is assumed as ~96%.¹

Fig. S11. (a)-(d) Selected charge/discharge cycles for (a) pure 3D graphene and (c) Fe_2O_3 /graphene (40 wt.%), and their corresponding differential capacity curves, (b) and (d), respectively. Note the maintenance of multiple oxidation peaks in the nanocomposite after multiple cycles.

Fig. S12 (a) Structure of Li storage at the graphene-Li₂O interface. Left: top view; Right: side view. The interface Li are shown in a different color from those in Li₂O. The black lines indicate the boundary of the supercell used for calculations. (b) The adsorption energy (see Eq. 1 in the main text) with respect to the energy of bulk Li, for Li adsorbed on graphene, on Li_2O surface, and at the graphene-Li₂O interface. All three cases have the concentration of adsorbed Li.

References

 Lin, Y. M.; Abel, P. R.; Heller, A.; Mullins, C. B., alpha-Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries. *J. Phys. Chem. Lett.* **2011**, *2* (22), 2885-2891.
J.M. Zuo and J.C. Mabon, Web-based Electron Microscopy Application Software:

Web-EMAPS, Microsc Microanal 10 (Suppl 2), 2004; URL: http://emaps.mrl.uiuc.edu/.