Effect of Particle Size of La₅Ti₂CuS₅O₇ on Photoelectrochemical Properties in Solar Hydrogen Evolution

Jingyuan Liu,^a Takashi Hisatomi,^a Masao Katayama,^a Tsutomu Minegishi,^{a,b} Jun Kubota,^{a,†} and Kazunari Domen^{a,*}

^a Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan

^b Japan Science and Technology Agency / Precursory Research for Embryonic Science and Technology (JST/PRESTO), Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi-shi, 332-0012 Saitama, Japan

[†]Current Affiliation: Department of Chemical Engineering, Fukuoka University 8-19-1 Nanakuma, Jonan-ku, 814-0180 Fukuoka, Japan

Figure S1. XRD patterns for (a) the reference LTC (ICSD #99612),^{S1} (b) undoped, (c) Sc-doped, (d) Mg-doped, and (e) Al-doped LTC.

Figure S2. SEM images for (a) undoped, (b) Sc-doped (c) Mg-doped, and (d) Aldoped LTC.

Figure S3. DRS for (a) undoped, (b) Sc-doped (c) Mg-doped, and (d) Al-doped LTC.

Figure S4. Current-potential curves for (a) undoped, (b) Sc-doped, (c) Mg-doped, and (d) Al-doped LTC photocathodes under chopped simulated sunlight illumination.

Figure S5. Current-potential curves for photocathodes of Mg-doped LTC powders synthesized with annealing durations of (a) 48 and (b) 96 h. The measurements were carried out in a 0.1 M Na₂SO₄ aqueous solution (pH 10) under chopped simulated sunlight irradiation. The photocathodes were modified with Pt by photodeposition.

Figure S6. Time courses of hydrogen and oxygen evolution using a Mg-doped LTC photocathode (annealed for 96 h; projected area 2.0 cm²) in a three-electrode configuration under visible light irradiation ($\lambda > 420$ nm) by a 300 W Xe lamp equipped with a 420 nm long-pass cutoff filter and a dichroic mirror. The electrode potentials employed were 0 (left panel) and 0.65 V (right panel) vs. RHE. The solid

curves labelled e⁻/2 and e⁻/4 show the numbers of hydrogen and oxygen molecules that are generated at unity faradaic efficiency, respectively. The measurements were carried out in 0.1 M Na₂SO₄ aqueous solution adjusted to pH 10.

Figure S7. Normalized IPCE spectra of (a,b) large-sized Mg-doped LTC measured at (a) 0 and (b) 0.65 V vs. RHE and (c,d) small-sized Mg-doped LTC measured at (c) 0 and (d) 0.65 V vs. RHE in Na_2SO_4 aqueous solution adjusted to pH 10. The photocathodes were modified with Pt by photodeposition.

Reference

S1. V. Meignen, L. Cario, A. Lafond, Y. Moëlo, C. Guillot-Deudon, A. Meerschaut, J. Solid State Chem., 2004, **177**, 2810.