Supporting Imformation

Metal-Organic Frameworks with Large Breathing Effect to Host Hydroxyl Compounds for High Anhydrous Proton Conductivity over a Wide Temperature Range from Subzero to 125 °C

Yingxiang Ye,^{[#], a} Xiuzhen Wu, ^{[#], a} Zizhu Yao,^a Ling Wu,^a Zetao Cai,^a Lihua Wang,^a Xiuling Ma,^a Qian-Huo Chen,^a Zhangjing Zhang,^{*, a} and Shengchang Xiang,^{*, a}

 ^a College of Materials Science and Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P R China. E-mails: zzhang@fjnu.edu.cn; scxiang@fjnu.edu.cn
 ^[#] These authors contributed equally to this work.

Content

Table S1 Crystallographic data and structure refinement results	S3
Table S2 Guest-induced breathing effect amplitudes of reported compounds	S5
Table S3 The comparison of proton conductivity on FJU-31@Hq and FJU-31	@Ch with
representative crystalline porous proton-conductor materials	S7
Figure S1 Supplementary structural figure for FJU-30	S10
Figure S2 The PXRD patterns for the as-synthesized samples	S11
Figure S3 The TGA curves for the as-synthesized MOFs	S12
Figure S4 The significant difference dihedral angle in FJU-31 and FJU-31@Bu	S13
Figure S5 The evolution of the 1D rhombic channel in FJU-31@Hq and FJU-31@Ch.	S13
Figure S6 FT-IR spectra for the as-synthesized MOFs	S14
Figure S7 The DSC profiles for FJU-31@Hq and FJU-31@Ch	S15
Figure S8 N ₂ sorption isotherms at 77 K for FJU-31	S16
Figure S9 CO ₂ sorption isotherms for FJU-31	S16
Figure S10 Nyquist plots for FJU-31@Hq at different temperatures	S17
Figure S11 Nyquist plots for FJU-31@Ch at different temperatures	S18
Figure S12 Nyquist plots for FJU-31@Bu at different temperatures	S19
Figure S13 Fitting for the Nyquist plot at 30°C of FJU-31@Hq	S20
Figure S14 Arrhenius plot for FJU-31@Hq and FJU-31@Ch in comparison	with other
representative proton-conducting materials under anhydrous conditions	S21
Figure S15 Speculative proton-conducting pathways for FJU-31@Hq and FJU-31@C	hS22
Supplementary References	S23

Identification code	FJU-30	FJU-31	FJU-31@Hq-lt	FJU-31@Hq
CCDC	1442065	1442071	1442067	1442066
Empirical formula	$C_{12}H_{12}N_{22}O_{12}Zn_5$	$C_{20}H_{12}N_6O_8Zn_3\\$	$C_{34}H_{36}N_8O_{12}Zn_3$	$C_{20}H_{12}N_6O_8Zn_3$
Formula weight	983.29	660.47	944.82	660.47
Temperature/K	293(2)	293(2)	100	293(2)
Crystal system	tetragonal	monoclinic	triclinic	monoclinic
Space group	$I4_{1}/a$	$P2_{1}/c$	<i>P</i> -1	<i>C</i> 2/ <i>m</i>
a/Å	15.5031(4)	8.6854(5)	9.1768(5)	11.9442(16)
<i>b</i> /Å	15.5031(4)	19.7877(8)	10.9017(8)	19.1318(10)
$c/\text{\AA}$	12.0934(4)	7.9849(5)	11.3961(9)	9.2109(7)
$\alpha/^{\circ}$	90	90	117.938(8)	90
$\beta/^{\circ}$	90	113.775(7)	100.535(5)	109.821(12)
γ/°	90	90	98.517(5)	90
$V/\text{\AA}^3$	2906.58(17)	1255.86(13)	953.72(13)	1980.1(4)
Ζ	4	2	1	2
$\rho_{calc}g/cm^3$	2.247	1.747	1.645	1.108
M /mm ⁻¹	5.503	3.845	2.829	2.439
F(000)	1936.0	656.0	482.0	656.0
Crystal size/mm ³	$0.12 \times 0.06 \times 0.06$	$0.2\times0.1\times0.1$	$0.15\times0.1\times0.1$	$0.15\times0.1\times0.1$
Radiation	Cu $K\alpha$ (λ =	Cu <i>Kα</i> (λ=	Cu <i>Kα</i> (λ=	Cu <i>Kα</i> (λ=
Radiation	1.54184Å)	1.54184 Å)	1.54184 Å)	1.54184 Å)
Goodness-of-fit on F ²	1.040	1.008	1.021	0.968
Final R indexes $[I \ge 2\sigma(I)]^a$	$R_1 = 0.0320,$	$R_1 = 0.0420,$	$R_1 = 0.0810,$	$R_1 = 0.0430,$
$1 \text{ mat it indexes } [1 - 20 (1)]^*$	$wR_2 = 0.0781$	$wR_2 = 0.1009$	$wR_2 = 0.2161$	$wR_2 = 0.1000$
Final R indexes [all data] ^a	$R_1 = 0.0402,$	$R_1 = 0.0608,$	$R_1 = 0.0956,$	$R_1 = 0.0640,$
	$wR_2 = 0.0847$	$wR_2 = 0.1119$	$wR_2 = 0.2326$	$wR_2 = 0.1099$
Largest diff. peak/hole / e Å	0.37/-0.35	0.61/-0.49	1.95/-1.05	0.53/-0.43

 Table S1 | Crystal data and refinement results for the as-synthesized samples.

Identification code	FJU-31@Ch-lt	FJU-31@Ch	FJU-31 @Bu
CCDC	1442069	1442068	1442070
Empirical formula	$C_{38}H_{47}N_6O_{11}Zn_3$	$C_{20}H_{12}N_6O_8Zn_3$	$C_{20}H_{12}N_6O_8Zn_3$
Formula weight	959.92	660.47	660.47
Temperature/K	100	293(2)	293(2)
Crystal system	triclinic	triclinic	monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>C</i> 2/ <i>m</i>
a/Å	9.1743(4)	9.2142(6)	12.1742(4)
b/Å	10.8488(5)	11.1531(19)	18.9858(5)
$c/\text{\AA}$	11.3458(5)	11.3582(19)	9.1980(3)
α/°	113.479(4)	112.294(16)	90
$eta/^{\circ}$	98.726(4)	99.494(9)	108.810(4)
γ/°	98.016(4)	99.046(9)	90
$V/\text{\AA}^3$	998.57(8)	1033.8(3)	2012.46(11)
Ζ	1	1	2
$\rho_{calc}mg/mm^3$	1.596	1.061	1.090
M /mm ⁻¹	2.674	2.336	2.400
F(000)	495.0	328.0	656.0
Crystal size/mm ³	$0.2\times0.15\times0.1$	$0.2\times0.15\times0.1$	$0.2\times0.15\times0.1$
Radiation	Cu <i>Kα</i> (λ= 1.54184 Å)	Cu <i>Kα</i> (λ= 1.54184 Å)	Cu <i>Kα</i> (λ= 1.54184 Å)
Goodness-of-fit on F ²	1.047	1.017	1.079
Final R indexes $[I \ge 2\sigma(I)]^a$	$R_1 = 0.0670, wR_2 = 0.1850$	$R_1 = 0.0835$, $wR_2 = 0.1996$	$R_1 = 0.0255, wR_2 = 0.0748$
Final R indexes [all data] ^a	$R_1 = 0.0740, wR_2 = 0.1937$	$R_1 = 0.1124$, $wR_2 = 0.2213$	$R_1 = 0.0284$, $wR_2 = 0.0769$
Largest diff. peak/hole / e Å-3	1.91/-1.10	2.56/-0.90	0.27/-0.39

(a) $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|; \ wR_2 = [\sum w(|F_0|^2 - |F_c|^2)^2 / \sum w(F_0^2)^2]^{1/2}$

			0 1	()	/ 1	1				
Compounds	Phase	Space group	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	V_{cell}/Z (Å ³)	BA (%)	Tools	Ref.	
	close	I2/a	8.5203	15.0866	18.313	2331.4/4				
[Mn(pba) ₂]	DMF	I2/a	8.5876	14.9686	18.6280	2380.6/4	2.1	SCXRD	1	
	DMA	I2/a	8.721	14.945	18.656	2420/4	3.8			
	close	P6 ₂ 22	19.254	19.254	28.326	9094.2/3		COVDD	2	
$[CdL_2(ClO_4)_2]$	open	P6 ₂ 22	19.477	19.477	28.277	9289.8/3	2.2	SCARD	2	
	close	P4 ₃ 2 ₁ 2	11.5806	11.5806	34.904	4681.0/8				
Zn (34pba) ₂	propanol	$P4_{3}2_{1}2$	11.6638	11.6638	36.790	5005.0/8	6.9	SCXRD	3	
	butanol	P4 ₃ 212	11.728	11.728	36.977	5086/8	8.6			
	9-close	C2/m	19.12	9.00	9.00	1658/2				
$[Zn_2(fu-bdc)_2]$	9-DMF	I4/mcm	15.44	15.44	19.26	4593/4	38.5	DVDD	4	
(dabco)] _n	8-close	<i>C</i> 2/ <i>m</i>	18.91	9.92	9.57	1789/2		PXKD	4	
	8-DMF	P4/mmm	10.94	10.94	9.64	1154/1	29.0			
	close	Imma	24.561	6.9860	9.1333	1567.1/4		COVDD	-	
Cu(BD1ri)L	open	Imma	22.538	7.044	13.772	2186.5/4	39.5	SCARD	2	
	close	C2/c	19.685	7.849	6.782	1012.8/4		,		
MIL-53	H ₂ BDC	Pnam	17.340	12.178	6.822	1440.6/4	42.2	in situ	6	
	open	Ітст	16.733	13.038	6.812	1486.1/4	46.7	PXRD		
	close		6.651	27.94	10.735	1979.4		DIADD		
COMOC-2	open	Imma	6.776	23.087	18.897	2956.1	49.3	PXRD	1	
	close	$P2_{1}/c$	8.6854	19.7877	7.9849	1255.86/2				
FJU-31	Hq	C2/m	11.9442	19.1318	9.2109	1980.1/2	62	SCXRD	this	
	Ch	<i>P</i> -1	9.2142	11.1531	11.3582	1033.8/1	65		work	
	Bu	C2/m	1033.8	18.9858	9.1980	2012.46/2	60			
	close	<i>R-3c</i>	29.792	29.792	12.063	9271/6				
	Pyridine	<i>R-3c</i>	28.691	28.691	26.622	18986/6	105	COVDD	0	
MCF-18(L3,N1)	DMF	<i>R-3c</i>	28.948	28.948	24.341	17664/6	90	SCARD	8	
	DMA	<i>R-3c</i>	28.932	28.932	23.920	17339/6	87			
	close	C2/c	24.87	6.04	7.22	1084		:		
Co(BDP)	Int.3	C2/c	21.61	15.55	7.02	2338	116	in situ	9	
	Filled	P4 ₁ 22	13.29	13.29	14.82	2618	142	PXKD		
	close	<i>P</i> -62 <i>c</i>	9.26	9.26	15.31	1135/2				
MIL-88A	CH ₃ OH	<i>P</i> -62 <i>c</i>	13.78	13.78	12.69	2090/2	84.1		10	
	H ₂ O	<i>P</i> -62 <i>c</i>	13.87	13.87	12.66	2110/2	85.9			
	close	P6 ₃ /mmc	9.5	9.5	19.0	1485/1		in situ	11	
MIL-88B	CH ₃ OH	P6 ₃ /mmc	15.626	15.626	15.960	3375.0/1	127	PXRD	11	
	close	<i>P</i> -62c	10.0	10.0	23.2	2120			10	
MIL-88C	Pyridine	<i>P</i> -62c	18.753	18.753	18.743	5708.2/1	169.2		12	
	close	<i>P</i> -62c	10.2	10.2	27.6	2490/1			11.10	
MIL-88D	Lutidine	<i>P</i> -62c	20.040	20.040	22.911	7968.7/1	220		11,12	
MIL-89	close	Pbnn	9.13	9.13	20.0	1470/1		• •,		
	Pyridine	P6 ₃ /mmc	17.0	17.0	15.7	3900/1	165	in situ	13	
	Methanol	P6 ₃ /mmc	15.8	15.8	16.75	3615/1	146	РХКД		

Table S2 | Guest-induced breathing amplitudes (BA, %) of reported compounds.

Amplitudes of breathing (BA, %) for the crystal structures above, corresponding to the structural switching from the open to the closed forms, are calculated from the equation $100 \times (V_{op}-V_{dry})/V_{dry}$. *V* was derived from the unit cell volumes (*V*_{cell}) and the number of formula units per unit cell (*Z*) according to the following equation: $V = V_{cell}/Z$.

Table S3 | The comparison of proton conductivity on FJU-31@Hq and FJU-31@Ch withrepresentative proton conductor materials. The compounds in the first part with white backgroundare tested in anhydrous conditions, those in the second part with cyan background measured undermoist conditions.

	Proton Conductivity (S cm ⁻¹)					temperature			
Compounds	Guests	-30 °C	30 °C	120 °C	Max (T)	range of the test (°C)	E_a (eV)	Ref	
$\{[(Me_2NH_2)_3(SO_4)]_2[Zn_2(ox)_3]\}_n$	$(Me_2NH_2)^+,$ SO_4^{2-}		7 × 10 ⁻⁵	1×10-4	1×10 ⁻⁴ (150 °C)	30~150	0.13	14	
FJU-31@Hq	Hq, DMAc	1.49×10 ⁻⁵	5.42×10-5	2.47×10-4	2.65×10 ⁻⁴ (125 °C)	-40~125	0.18	This work	
FJU-31@Ch	Ch	2.36×10-6	2.11×10 ⁻⁵	8.05×10-5	8.05×10 ⁻⁵ (120 °C)	-40~120	0.19/ 0.29	This work	
His @ [Al(OH) (1,4-ndc)] _n	His		3.85×10-5	1.06×10-3	1.7 ×10 ⁻³ (150 °C)	25~150	0.25	15	
[Eu ₂ (CO ₃)(ox) ₂ (H ₂ O) ₂]·4H ₂ O	H ₂ O		9.48×10 ⁻⁶	1.18×10-3	2.08×10 ⁻³ (150 °C)	25~150	0.28	16	
Im@Td-PPI	Im	4.4×10 ⁻⁶	7.64×10 ⁻⁵		3.49×10 ⁻⁴ (90 °C)	-40~90	0.30	17	
Im@Td-PNDI	Im	9.0×10 ⁻⁷	2.26×10 ⁻⁵		0.90×10 ⁻⁴ (90 °C)	-40~90	0.33	17	
Im@UiO-67	Im			1.44×10 ⁻³	1.58×10 ⁻³ (130 °C)	45~130	0.36	18	
[Zn ₃ (H ₂ PO ₄) ₆ (H ₂ O) ₃](Hbim)	Hbim		1.40×10 ⁻⁷		6.1× 10 ⁻⁷ (60 °C)	30~60	0.4	19	
[Zn(HPO ₄)(H ₂ PO ₄) ₂](ImH ₂) ₂	ImH_2^+		4.71×10 ⁻⁸	2.51× 10 ⁻⁴	2.6× 10 ⁻⁴ (130 °C)	25~130	0.47	20	
In-IA-2D-2	(Me ₂ NH ₂) ⁺ , DMF		2.33×10 ⁻⁵		2.72×10 ⁻⁵ (77 °C)	25~90	0.48	21	
[Co ₂ Na(bptc) ₂][Emim] ₃	Emim ⁺			7.83×10 ⁻⁸	6.33×10 ⁻⁷ (170 °C)	70~170 along <i>c</i> axis	0.49	22	
$[Zn_3(H_2PO_4)_6](Hbim)$	Hbim		1.20×10 ⁻⁷	1.3×10 ⁻³	1.3×10 ^{−3} (120 °C)	30~120	1.5/0.5	19	
β-PCMOF2(Tz) _{0.3}	TzH		1.04×10 ⁻⁶	1.35×10-4	2×10 ⁻⁴ (150 °C)	23~150	0.51	23	
$[Zn(H_2PO_4)_2(TzH)_2]_n$	TzH			5.01× 10 ⁻⁵	1.2×10 ⁻⁴ (150 °C)	45~150	0.6	24	
Im@{Al(μ_2 -OH) (1,4-ndc)} _n	Im		2.56×10 ⁻⁷	2.2× 10 ⁻⁵	2.2× 10 ⁻⁵ (120 °C)	25~120	0.6	25	
$[Zn(H_2PO_4)_2(HPO_4)] \cdot (H_2dmbim)_2$	H ₂ dmbim		1.22×10 ⁻⁹	6.91×10 ⁻⁶	2×10 ⁻⁴ (190 °C)	30~190	0.66	26	
Im@{Al(μ_2 -OH) (1,4-bdc)} _n	Im		5.84×10 ⁻¹⁰	1.0×10 ⁻⁷	1.0×10 ⁻⁷ (120 °C)	25~120	0.9	25	

[ImH ₂][Cu(H ₂ PO ₄) _{1.5} (HPO ₄) _{0.5} . Cl _{0.5}]	$\rm Im H_2^+$	1.69×10-7	9.31×10-3	2×10 ⁻² (130 °C)	25~130	1.1	27
[Zn(H ₂ PO ₄) ₂ (HPO ₄)]·H ₂ dabco	H ₂ dabco		6.13×10 ⁻⁹	8 × 10 ⁻⁵ (160 °C)	90~150	1.2	26
PA@Tp-Azo	H ₃ PO ₄ , H ₂ O	4.70×10 ⁻⁵	4.93×10 ⁻⁵	6.7× 10 ⁻⁵ (67 °C)	22~136		28
His@Zn-MOF-74	His		7.32×10 ⁻¹¹	4.3×10 ⁻⁹ (146 °C)	40~146		29
		47.105		9.9×10 ⁻⁴			
PA@Tp-Azo	H ₃ PO ₄ , H ₂ O	4./×10 ⁻⁵		98%	22~67	0.11	28
		90% RH		59 °C			
				2.51×10-3			
PCMOF-5	H ₂ O	1.56×10-3		98% RH	20~60	0.16	30
		98% RH		60 °C			
				7×10-6			
[MIL-53(Fe)	H ₂ O	3.62×10-6		95% RH	20~80	0.21	31
(COOH) ₂]	2	95% RH		(80 °C)			
				1×10-1			
nafion	H2O	5×10-2		98% RH	25~80	0.22	32
	1120	98% RH		80 °C			
				1 7×10 ⁻³			
$(NH_4)/[MnCr_2(\alpha x)_2]_2 \cdot 4H_2O$	$H_{2}O$ NH ι^{+}	1.35×10 ⁻³		96% RH	22~40	0.23	33
(1114)4[1111012(01)6]3 41120	1120, 1114	96% RH		40 °C	22 10	0.25	55
				40° C 2×10^{-3}			
	H ₃ PO ₄ ,	$2.0(\times 10^{-4})$	2.8× 10 ⁻³	5 × 10 ⁻⁵	20 150	0.25	24
$H_3PO_4(a)$ MIL-101	little H ₂ O	2.06×10-4	20% RH	0.13% KH	30~150	0.25	34
				150 °C			
		1.8 x 10 ⁻²		8.4 x 10 ⁻²			
UiO-66(SO ₃ H) ₂	H ₂ O	90% RH		90% RH	25~80	0.32	35
				80 °C			
		4 45 x 10 ⁻⁵		4.45 x 10 ⁻⁵			
$[Zn(l-LCl)(Cl)](H_2O)_2$	H_2O	98% RH		98% RH	23~31	0.34	36
		2070 Idi		31 °C			
		2 70×10-3		3.23×10-3			
Fe(ox)·2H ₂ O	H_2O	2.79×10 ⁻		98% RH	5~45	0.37	37
		98% KI		45 °C			
		2.02.10-4		1.3×10 ⁻³			
	HCl, H ₂ O	3.82×10 +		98% RH	24~40	0.39	38
(CB[6])		98% RH		40 °C			
				1×10^{-2}			
H ₂ SO ₄ @MIL-101	H_2SO_4 , little		2.71×10 ⁻²	0.13% RH	40~150	0.42	34
	H ₂ O		20% RH	150 °C			
				1.64×10 ⁻²			
$(NH_4)_2(adp)[Zn_2(ox)_3]\cdot 3H_2O$	H_2O , NH_4^+	1.18×10-2		98% RH	25~35	0.63	39
· · · · · · · · · · · · · · · · · · ·		98% RH		35 °C			

Im=Imidazole; PA=H₃PO₄; Tp=triformylphloroglucinol; Azo= 4,4'-azodianiline; His=Histamine; 1,4-ndc=1,4-naphthalene dicarboxylic acid; (Me₂NH₂)⁺=dimethyl ammonium; In-IA-2D-2= {In(IA)₂[(CH₃)₂NH₂](DMF)}; IA = isophthalic acid; ox= oxalate; β -PCMOF2= Na₃(2,4,6trihydroxy-1,3,5-benzenetrisulfonate); TzH=1,2,4-Triazole; ImH₂⁺=Imidazole cations; Hbim=Benzimidazole; H₂dmbim=5,6-dimethylbenzimidazole; 1,4-bdc=1,4-benzenedicarboxylic acid; Emim⁺= 1-ethyl-3-methyl imidazolium; bptc= 2,2',4,4'-biphenyl tetracarboxylic; H₂dabco= 1,4-diazabicyclo[2.2.2]octane; Zn-MOF-74= $[Zn_2(2,5-DOTP)]_n$ (DOTP = 2,5dioxidoterephthalate); adp= adipic acid; PCMOF-5= LaH₅L(H₂O)₄ (L= Benzene-1,2,4,5tetramethylenephosphonic acid); Hq=hydroquinone, Ch=cyclohexanol.

Figure S1 | The coordination geometry of the precursor $[Zn_5(tz)_6(NO_3)_4]$ **FJU-30**; Zinc polyhedron, carbon, nitrogen and oxygen atoms are green, gray, blue, and red, respectively, H atoms are omitted for clearly.

The pentanuclear precursor $Zn_5(tz)_6(NO_3)_4$ (**FJU-30**) is precipitated in colorless bulk crystals from ethanol solution of $Zn(NO_3)_2 \cdot 6H_2O$ and 1H-1,2,3-triazole at 100 °C for 1 day in a Teflon-lined steel bomb. It crystallizes in the tetragonal space group $I4_1/a$, composed of a tetrahedral arrangement of four five-coordinate Zn^{2+} ions centered on the fifth one. Each of the six tz ligands straddles an edge of the tetrahedron and is bound to the central metal through the nitrogen atom in the 2-position. Six nitrogen atoms from six tz ligands therefore complete the coordination sphere of the central Zn^{2+} ion, while each Zn^{2+} ion on the apical positions is coordinated by three nitrogen atoms from three tz ligands and two oxygen atoms from a chelating nitrate group.

Figure S2 | PXRD patterns for the as-synthesized samples.

Figure S3 | TGA curves for FJU-31@Hq, FJU-31@Ch and FJU-31@Bu.

Figure S4 | The angles between the plane of carboxyl (light orange) and phenyl ring (light blue) are 1.6° and 24.2° in **FJU-31@Bu** and **FJU-31**, respectively.

Figure S5 | Perspective view of the evolution of the 1D rhombic channel of **FJU-31@Hq** (a) and **FJU-31@Ch** (b) induced by the temperature stimulus.

Figure S6 | FT-IR spectra for FJU-31@Hq, FJU-31@Ch and FJU-31@Bu.

Figure S7 | The DSC profiles for FJU-31@Hq (a) and FJU-31@Ch (b).

Figure S8 | N₂ sorption isotherms at 77 K for FJU-31.

Figure S9 | CO₂ sorption isotherms for FJU-31 at 273 K and 296 K.

In order to investigate the gas-sorption properties, **FJU-31@Bu** was exchanged by CH₂Cl₂ and then evacuated at room temperature 24 h in a vacuum to form the desolvated sample **FJU-31**. The 77 K N₂ sorption isotherms show type-I behaviors (**Figure S8**) and characterized typical crystalline microporous materials. The BET and Langmuir surface areas are 890.6 and 1132.5 m²/g, respectively. Intriguing dynamic adsorption behavior is presented in the low pressure CO₂ isotherm of **FJU-31** recorded at 273 K and 296 K, respectively (**Figure S9**). The CO₂ isotherm at 273 K shows a sudden increase at P = 0.26 bar. Such step in the isotherm is due to structural changes during adsorption.⁴⁰ The atypical CO₂ adsorption behavior at 273 K encouraged us to further measure its CO₂ isotherm at room temperature. Notably, the adsorption step move to higher absolute pressure (P = 0.47 bar) with increasing temperature. The CO₂ uptake value of **FJU-31** at 273 K and 1 bar is 53 cm³/g, compared with that of Zn₃(tz)₂(bdc)₂·x(DMF) (57 cm³/g) reported by Zhang *et al.*⁴¹

Figure S10 | Proton conductivity of FJU-31@Hq in anhydrous conditions at different temperature.

Figure S11 | Proton conductivity of FJU-31@Ch in anhydrous conditions at different temperature.

Figure S12 | Proton conductivity of FJU-31@Bu in anhydrous conditions at different temperature.

Figure S13 | Fitting for the Nyquist plot at 30°C in anhydrous conditions of FJU-31@Hq, with circuit model used for the data fitting shown as an inset.

Figure S14 | Arrhenius plot for FJU-31@Hq and FJU-31@Ch in comparison with other representative crystalline porous proton-conducting materials under anhydrous conditions.

Figure S15 | Speculative proton pathway conduction for **FJU-31@Hq** (a) and **FJU-31@Ch** (b) based on single crystal X-ray data showing the actual positions of hydroquinone and DMAc or two types of cyclohexanol within the structure. The green dashed lines represent the hydrogen-bonding interactions between the hydroquinone and DMAc, or two types of cyclohexanol.

For **FJU-31@Hq** (Figure S15a), there is a large residual Q peak (1.58) located in the orthoposition of the hydroxyl group on hydroquinone, indicating the hydroxyl groups may be splitting. Meanwhile, the atoms of C12 and O5 show similar diffracted intensity and could not be completely distinguished by SCXRD, therefore they may substitute each other at the given site. According to the above analysis, the hydroquinone and DMAc molecules located in the channel could swing and roll over, and then to generate an orbicular intermolecular hydrogen-bonding interaction. Moreover, the proton H⁺ ion from hydroquinone could pass from one end to the other end, so that the two kinds of guest molecules could made a complete proton conducting pathway in the channel for **FJU-31@Hq**. For **FJU-31@Ch** (Figure S15b), there are two types of cyclohexanol molecules. The hydroxyl group from one cyclohexanol molecule splits into two parts because the center of this cyclohexanol locates at the inversion center with the Wyckoff position 1*d*. The two types of cyclohexanol molecules could generate an intermolecular hydrogen-bonding interaction and then made a complete proton conducting pathway in the one-dimensional rhombic channel for **FJU-31@Ch**.

Supplementary References

- H.-L. Zhou, R.-B. Lin, C.-T. He, Y.-B. Zhang, N. Feng, Q. Wang, F. Deng, J.-P. Zhang and X.-M. Chen. *Nat. Commun.*, 2013, 4, 2534-2541.
- 2 C. D. Wu and W. B. Lin, Angew. Chem., Int. Ed., 2005, 44, 1958-1961; Angew. Chem., 2005, 117, 1994-1997.
- 3 G. Mehlana, G. Ramon and S. A Bourne, CrystEngComm., 2014, 16, 8160-8168.
- 4 S. Henke, A. Schneemann, A. Wuetscher and R. A. Fischer, J. Am. Chem. Soc., 2012, **134**, 9464-9474.
- 5 A. Demessence and J. R. Long, Chem. -Eur. J., 2010, 16, 5902-5908.
- 6 C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Loueer and G. Ferey, J. Am. Chem. Soc., 2002, **124**, 13519-13526.
- 7 Y.-Y. Liu, S. Couck, M. Vandichel, M. Grzywa, K. Leus, S. Biswas, D. Volkmer, J. Gascon, F. Kapteijn, J. F. M. Denayer, M. Waroquier, V. Van Speybroeck and P. Van Der Voort, *Inorg. Chem.*, 2013, **52**, 113-120.
- 8 Y.-S. Wei, K.-J. Chen, P.-Q. Liao, B.-Y. Zhu, R.-B. Lin, H.-L. Zhou, B.-Y. Wang, W. Xue, J.-P. Zhang and X.-M. Chen, *Chem. Sci.*, 2013, 4, 1539-1546.
- 9 F. Salles, G. Maurin, C. Serre, P. L. Llewellyn, C. Knofel, H. J. Choi, Y. Filinchuk, L. Oliviero, A. Vimont, J. R. Long and G. Ferey, J. Am. Chem. Soc., 2010, 132, 13782-13788.
- C. Mellot-Draznieks, C. Serre, S. Surble, N. Audebrand and G. Ferey, J. Am. Chem. Soc., 2005, 127, 16273-16278.
- 11 P. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux, G. Maurin, A. Vimont, M. Daturi, O. David, E. Magnier, N. Stock, Y. Filinchuk, D. Popov, C. Riekel, G. Ferey and C. Serre, J. Am. Chem. Soc., 2011, 133, 17839-17847.
- 12 C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk and G. Ferey, *Science*, 2007, **315**, 1828-1831.
- C. Serre, S. Surblé, C. Mellot-Draznieks, Y. Filinchuk and G. Ferey, *Dalton Trans.*, 2008, 5462-5464.
- 14 S. S. Nagarkar, S. M. Unni, A. Sharma, S. Kurungot and S. K. Ghosh, Angew. Chem., Int. Ed., 2014, 53, 2638-2642; Angew. Chem., 2014, 126, 2676-2680.
- 15 D. Umeyama, S. Horike, M. Inukai, Y. Hijikata and S. Kitagawa, *Angew. Chem., Int. Ed.*, 2011, 50, 11706-11709; *Angew. Chem.*, 2011, 123, 11910-11913.
- 16 Q. Tang, Y. Liu, S. Liu, D. He, J. Miao, X. Wang, G. Yang, Z. Shi and Z. Zheng, J. Am. Chem.

Soc., 2014, 136, 12444-124449.

- 17 Y. Ye, L. Zhang, Q. Peng, G. Wang, Y. Shen, Z. Li, L. Wang, X. Ma, Q. H. Chen, Z. Zhang and S. Xiang, J. Am. Chem. Soc., 2015, 137, 913-918.
- 18. S. C. Liu, Z. F. Yue and Y. Liu, Dalton Trans., 2015, 44, 12976-12980.
- 19 D. Umeyama, S. Horike, M. Inukai and S. Kitagawa, J. Am. Chem. Soc., 2013, 135, 11345-11350.
- 20 S. Horike, D. Umeyama, M. Inukai, T. Itakura and S. Kitagawa, J. Am. Chem. Soc., 2012, 134, 7612-7615.
- 21 T. Panda, T. Kundu and R. Banerjee, Chem. Commun., 2013, 49, 6197-6199.
- 22 W.-X. Chen, H.-R. Zhuang, G.-L. Xu, L.-S. Long, R.-B. Huang and L.-S. Zheng, *Chem. Commun.*, 2011, **47**, 11933-11935.
- 23 J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski and G. K. H. Shimizu, *Nat. Chem.*, 2009, 1, 705-710.
- 24 D. Umeyama, S. Horike, M. Inukai, T. Itakura and S. Kitagawa, J. Am. Chem. Soc., 2012, 134, 12780-12785.
- 25 S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai and S. Kitagawa, *Nat. Mater.*, 2009, 8, 831-836.
- 26 M. Inukai, S. Horike, W. Chen, D. Umeyama, T. Itakura and S. Kitagawa, *J. Mater. Chem. A.*, 2014, **2**, 10404-10409.
- 27 S. Horike, W. Chen, T. Itakura, M. Inukai, D. Umeyama, H. Asakura and S. Kitagawa, *Chem. Commun.*, 2014, 50, 10241-10243.
- 28 S. Chandra, T. Kundu, S. Kandambeth, R. BabaRao, Y. Marathe, S. M. Kunjir and R. Banerjee, J. Am. Chem. Soc., 2014, 136, 6570-6573.
- 29 M. Inukai, S. Horike, D. Umeyama, Y. Hijikata and S. Kitagawa, *Dalton Trans.*, 2012, **41**, 13261-13263.
- 30 J. M. Taylor, K. W. Dawson and G. K. H. Shimizu, J. Am. Chem. Soc., 2013, 135, 1193-1196.
- 31 A. Shigematsu, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2011, 133, 2034-2036.
- 32 (a) R. C. T. Slade, A. Hardwick and P. G. Dickens, *Solid State Ionics*, 1983, 9, 1093-1098; (b)
 G. Alberti and M. Casciola, *Solid State Ionics*, 2001, 145, 3-16.
- 33 E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo, H. Liu, B. Dkhil, F. Lloret, K. Nakagawa, H. Tokoro, S. Ohkoshi and M. Verdaguer, J. Am. Chem. Soc., 2011, 133, 15328-15331.
- 34 V. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N. Dybtsev, E. S. Shutova and V. P.

Fedin, J. Am. Chem. Soc., 2012, 134, 15640-15643.

- 35 W. J. Phang, H. Jo, W. R. Lee, J. H. Song, K. Yoo, B. S. Kim and C. S. Hong, Angew. Chem., Int. Ed., 2015, 54, 5142-5146; Angew. Chem., 2015, 127, 5231-5235.
- 36 S. C. Sahoo, T. Kundu and R. Banerjee, J. Am. Chem. Soc., 2011, 133, 17950-17958.
- 37 T. Yamada, M. Sadakiyo and H. Kitagawa, J. Am. Chem.Soc., 2009, 131, 3144-3145.
- 38 M. Yoon, K. Suh, H. Kim, Y. Kim, N. Selvapalam and K. Kim, *Angew. Chem., Int. Ed.*, 2011, 50, 7870-7873; *Angew. Chem.*, 2011, 123, 8016-8019.
- 39 M. Sadakiyo, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2009, 131, 9906-9907.
- 40 (a) J. Seo, C. Bonneau, R. Matsuda, M. Takata and S. Kitagawa, J. Am. Chem. Soc., 2011, 133, 9005-9013; (b) J. P. Zhang, S. K. Ghosh, J. B. Lin, and S. Kitagawa, *Inorg. Chem.*, 2009, 48, 7970-7976.
- 41 Z. Q. Jiang, G. Y. Jiang, F. Wang, Z. Zhao and J. Zhang, Chem.-Eur. J., 2012, 18, 10525-10529.