Supporting Information for

Effect approach to improve the electrochemical performance of LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ cathode material by MOF-derived coating

Siwu Li, Xiaotao Fu, Junwen Zhou,* Yuzhen Han, Pengfei Qi, Xing Gao, Xiao Feng and Bo Wang*

Experimental section

The synthesis of NH₂-MIL-53 (Al) was carried out as reported elsewhere.¹ Briefly, aluminum chloride hexahydrate (AlCl₃·6H₂O, 3.863 g, 16 mmol) 2-aminobenzene-1,4-dicarboxylate (abdc, 2.898 g, 16 mmol) was dissolved in 60 mL deionized water in a 100 mL Teflon-lined autoclave and heated at 150 °C for 9 h to form light yellow powder. After cooling to room temperature, the products were separated by centrifugation, then heated in N,N-dimethylformamide (DMF) at 150 °C for 24 h to remove the remaining abdc, during which the solvent was decanted and repeatedly replenished. After that, the products were immersed in dichloromethane and sonicated for 2 h, during which the solvent was replenished three times. The solvent was removed under vacuum at 150 °C for 12 h, yielding the degassed MOF powders.

 $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM622) was prepared through a co-precipitation method as following procedure.²

First, the Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ precursor was synthesized by co-

precipitation method. First, nickel acetate (Ni(CH₃COO)₂·4H₂O), $(Mn(CH_3COO)_2 \cdot 4H_2O)$ manganese acetate and cobalt acetate $(Co(CH_3COO)_2 \cdot 4H_2O)$, (mol.% of Ni:Co:Mn = 6:2:2) were dissolved in distilled water with a total concentration of 2 mol L⁻¹, and the solution was slowly dripped into a reactor. 4 mol L⁻¹ NaOH and 1 mol L⁻¹ NH₄OH solutions were simultaneously fed into the reactor. The solution was kept at 50 °C with the pH carefully controlled by the rate of NaOH addition to 11 under vigorous stirring for 12 h. After the reaction, the precursor Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ was filtered, washed, and dried at 110 °C. Second, LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ was synthesized by mixing stoichiometric of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_2$ precursor and 5 mol.% excess LiOH to account for evaporation of lithium at high temperature, then the mixture was sintered at 470 °C for 5 h and calcined at 850 °C for 5 h in air at a heating rate of 5 °C min⁻¹.

MDA@NCM622 was synthesized through a simple mechanochemical synthetic procedure. Reactions were carried out in a ball mill (QM-3B, Nanjing University Instrument Factory, China) using an 80 mL PTFE grinding jar with five 10 mm zirconia balls. A solid mixture of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (1 g), NH₂-MIL-53 (50 mg) and ethanol (200 µL) was placed into the jar and ground at high speed for 0.5 h.

The as-prepared NH₂-MIL-53@NCM622 was transferred into a tube furnace and were annealed at 600 $^{\circ}$ C for 3 h in air under constant heating

and cooling rates of 5 °C min⁻¹.

Al₂O₃@NCM622 was conducted in a similar strategy through a simple mechanochemical synthetic protocol by treating as-synthesized $\text{LiNi}_{0.6}\text{Co}_{0.2}\text{Mn}_{0.2}\text{O}_2$ with Al₂O₃ (25 mg, PDF # 46-1212) powders. The powders were placed into the jar and ground at high speed for 0.5 h. The as-prepared Al₂O₃@NCM622 was transferred to a tube furnace and annealed at 600 °C for 3 h in air under constant heating and cooling rates of 5 °C min⁻¹.

Characterization

Powder X-ray diffraction (PXRD) technology was used to analyze and study the structure of as-prepared and cycled materials using D8 Advance Bruker powder diffractometer equipped with Cu K α (λ = 1.54178 Å) radiation at a scan rate of 10° 20/min. Fourier transform infrared (FT-IR) spectra were carried out using a Bruker ALPHA FT-IR Spectrometer. Morphology of the particles was determined by field emission scanning electron microscopy (FESEM, JSM 7500F, JEOL) and transmission electron microscopy (TEM, JEM-1200EX, JEOL). Elemental mappings were recorded by a JEOL 2100F transmission electron microscope operated at 200 kV. ICP-MS (Inductive coupled plasma mass spectrometer. X-ray photoelectron spectroscopy (XPS) was performed on the Thermo Scientific ESCALab 250Xi using 200 W monochromated Al Kα radiation.

Electrochemical measurements were carried out using coin-type cells (CR2032) assembled in an argon-filled glove box. For preparing the working electrode, a mixture of active material, Super P, and poly (vinyldifluoride) (PVDF) at a weight ratio of 80:10:10 was pasted on a pure aluminum foil. The loading level of active materials is about $2-3 \text{ mg cm}^{-2}$. Lithium foil was used as a counter electrode. A celgard 2400 porous membrane was used as a separator and the electrolyte consisted of a solution of 1 M LiPF₆ in ethylene carbonate/dimethyl carbonate (1:1, v%). Galvanostatic tests of the assembled cells were performed in the voltage range of 3.0-4.5 V (vs Li⁺/Li) at desired current densities at room temperature using a CT2001A Land instrument. EIS data were collected after charging samples at 4.5 V during 30 cycles with amplitude of 5 mV in the frequency range of 1 MHz to 1 mHz by an electrochemical workstation (CHI 760E: CH Instrumental Inc.). Cyclic voltammetry (CV) was performed also using CHI 760E over 3.0-4.5 V at a scanning rate 0.1 mV s⁻¹.

The mass of active material is calculated base on the sum of NCM622 and coating material.

Fig. S1 FTIR images of pristine NCM-622, MDA-2.5@NCM and NH₂-MIL-53 ball milled with NCM-622.

Fig. S2 PXRD patterns of pristine and coated NCM-622.

Fig. S3 PXRD patterns of (a) NH₂-MIL-53, (b) NH₂-MIL-53 after calcination at 600 °C in comparison with pure commercial Al_2O_3 powder (PDF # 46-1212).

Fig. S4 SEM image of (a) pristine NCM-622 and (b) MDA-2.5@NCM.

Fig. S5 (a) SEM image and (b) HRTEM image of pristine NCM-622 (ball-milled).

Fig. S6 (a) Ni 2p, (b) Co 2p, (c) Mn 2p and (d) Al 2p XPS data of MDA-2.5@NCM.

Fig. S7 Cyclic voltammetry of (a) pristine NCM-622 and (b) MDA-2.5@NCM at a scan rate of 0.1 mV s⁻¹ over 3-4.5 V for 5 cycles.

Fig. S8 Equivalent circuit performed to fit the Nyquist plots of in Fig. 4c and 4d.

Fig. S9 Cycling performance (0.2 C at first 5 cycles) of the pristine and coated NCM-622 over 3-4.5 V at a current of 1 C (1 C = 140 mA g^{-1}).

Table S1 Impedance parameters fitted for the pristine and coated NCMsamples from equivalent circuits of the cells after different cycles.

Samples	Bare			MDA-2.5@NCM		
	R _s	$R_{\rm f}$	R _{ct}	R _s	R_{f}	R _{ct}
1st	4.7	33.9	124.3	3.5	26.2	100.5
100th	11.5	105	1094	5.4	67.3	284.5

Coating material	Cut off voltage (V)	Current density (mA g ⁻¹)	1 st discharge capacity (mA h g ⁻¹)	Cycle number	Capacity Retention ^a (%)
MOF-derived alumina (MDA)	3-4.5	28	214.6	-	-
		140	196.5	100	92.7
		280	186.1	100	88.9
		700	168.5	100	78.8
Nano-Al ₂ O ₃ ³	3-4.5	28	197.1	-	-
		140	184.8	30	91.0
		280	~181	-	-
		700	~167	-	-
		1400	~157	-	-
Al ₂ O ₃ /conduc tive polymer ⁴	2.6-4.3	36	~173	-	-
		90	170.1	100	96.0
		180	~162	-	-
		900	~136	-	-
	3-4.5	28	187.6	-	-
T'A (140	~180	50	88.7
TiO ₂ 5		280	~170	-	-
		700	~142	-	-
SiO ₂ ⁶	3-4.3	0.1 C	175.7	-	-
		0.2 C	~174	-	-
		0.5 C	169.5	50	95.7
		1 C	~161	-	-
		2 C	153.2	-	-

Table S2 Different coating materials for NCM-622 (under ambienttemperature or 25 °C).

Coating material	Cut off voltage (V)	Current density (mA g ⁻¹)	l st discharge capacity (mA h g ⁻¹)	Cycle number	Capacity Retention ^a (%)
PADOT-co- PEG ⁷	2.8-4.3	36	~184	-	-
		90	~182	100	93.9
		180	~180	-	-
		900	166.0	-	-
rGO ⁸	2.8-4.3	0.1 C	174.2	-	-
		0.5 C	161.2	50	95.7
		1 C	154.9	-	-
		2 C	148.4	-	-
		10 C	105.8	-	-
Li ₂ ZrO ₃ 9	2.6-4.8	27.4	190	50	85
		137	~177	-	-
		274	~166	-	-
Li ₃ PO4 ¹⁰	3-4.3	28	~172	150	94.1
		280	~168	-	-
		840	~164	-	-
		1400	~160	-	-

^a Calculated based on the first discharge capacity.

References

- 1. M. Pera-Titus, T. Lescouet, S. Aguado and D. Farrusseng, J. Phys. Chem. C, 2012, **116**, 9507-9516.
- K. J. Kim, Y. N. Jo, W. J. Lee, T. Subburaj, K. Prasanna and C. W. Lee, *J. Power Sources*, 2014, 268, 349-355.

- Y. Chen, Y. Zhang, F. Wang, Z. Wang and Q. Zhang, J. Alloys Comp., 2014, 611, 135-141.
- 4. Y. S. Lee, W. K. Shin, A. G. Kannan, S. M. Koo and D. W. Kim, *ACS Appl. Mater. Interfaces*, 2015, 7, 13944-13951.
- Y. Chen, Y. Zhang, B. Chen, Z. Wang and C. Lu, J. Power Sources, 2014, 256, 20-27.
- W. Cho, S. M. Kim, J. H. Song, T. Yim, S. G. Woo, K. W. Lee, J.
 S. Kim and Y. J. Kim, *J. Power Sources*, 2015, 282, 45-50.
- S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin and D. W. Kim, ACS Appl. Mater. Interfaces, 2014, 6, 2546-2552.
- P. Yue, Z. Wang, Q. Zhang, G. Yan, H. Guo and X. Li, *Ionics*, 2013, 19, 1329-1334.
- S. Sun, C. Du, D. Qu, X. Zhang and Z. Tang, *Ionics*, 2015, 21, 2091-2100.
- C. H. Jo, D. H. Cho, H. J. Noh, H. Yashiro, Y. K. Sun and S. T. Myung, *Nano Research*, 2014, 8, 1464-1479.