Electronic Supplementary Information

Electro-stimulated release from a reduced graphene oxide composite hydrogel

Nicky Mac Kenna,^{*a*} Paul Calvert,^{*b*} Aoife Morrin,^{*a*} Gordon G. Wallace,^{*c*} and Simon E. Moulton^{*c*,*d*}

^{*a*} National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.

^b Bioengineering, University of Massachusetts Dartmouth, Dartmouth, USA. ^cARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.

^d Biomedical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Vic, 3122, Australia. Email: smoulton@swin.edu.au

Fig. S1 Cumulative MO release from un-modified (0% rGO) hydrogels under passive and electro-stimulated conditions.