Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Carbon Nanotube Uptake Changes the Biomechanical Properties of

Human Lung Epithelial Cells in a Time-dependent Manner

Chenbo Dong#, Reem Eldawud#, Linda M. Sargent, Michael L. Kashon, David Lowry, Yon Rojanasakul, and Cerasela Zoica Dinu*

C. Dong, R. Eldawud, Prof. C. Z. Dinu Department of Chemical Engineering, West Virginia University Morgantown WV, 26506, USA E-mail: cerasela-zoica.dinu@mail.wvu.edu

Dr. L. M. Sargent, Dr. M. L. Kashon, D. L. Lowry, National Institute for Occupational Safety and Health Morgantown WV, 26505, USA

Prof. Y. Rojanasakul Department of Basic Pharmaceutical Sciences West Virginia University Morgantown WV, 26506, USA

Equally contributing authors* Corresponding author

Table S1: Energy dispersive X-ray (EDX) spectroscopy allowed characterization of elemental composition of pristine (as purchased) and 1h acid washed multi-walled carbon nanotubes (simply called user-characterized MWCNTs). Following the acid treatment, the content of oxygen (O) increased while the contents of iron (Fe), copper (Cu), silica (Si), sulfur (S), and carbon (C) decreased for the acid washed samples.

Element	Pristine	MWCNTs
	(wt %)	(wt %)
С	91.99	90.25
О	3.92	7.56
Si	0.82	0.42
S	0.30	0.27
Cu	1.69	0.41
Fe	1.28	1.09

Table S2: Dispersity analysis of MWCNTs in different solutions, i.e., maximum amount of MWCNTs suspended in solution.

Туре	DI Water (mg/ml)	PBS (mg/ml)	DMEM (mg/ml)	DMEM+FBS (mg/ml)
Pristine	0.19	0.25	0.44	1.69
MWCNTs	0.38	0.50	0.94	2.50

Table S3: Length distribution of MWCNTs evaluated using atomic force microscopy(AFM).

Length (µm)	Mean	Standard Deviation
Pristine	4261	2354
MWCNTs	1040	553

Table S4: Raman analysis of MWCNTs and Alexa-BSA- MWCNT conjugates.

Туре	D band (cm ⁻¹)	G band (cm ⁻¹)	I _D /I _G ratio
MWCNTs	1348	1588	0.769
Alexa-BSA-MWCNTs	1343	1591	0.967
conjugates			

Reactive oxygen species (ROS) generation

Intracellular ROS generation was determined using the sensitive fluorescent probe 2',7'-dichlorofluorescein diacetate (DCF-DA; Sigma, USA). Upon formation of ROS, cellular esterase hydrolyzes DCF-DA to the highly fluorescent 2', 7'-dichlorofluorescein (DCF).¹ Briefly, BEAS-2B cells were seeded overnight in a 96-well plate (Corning, USA) at a density of 1.5×10^4 cell per well, and incubated with 5 μ M DCF-DA at 37 °C for 30 min. Subsequently, the cells were treated with 24 μ g/cm² MWCNTs suspended in Hank's Balanced Salt Solution (HBSS; Life Technologies, USA) for different exposure duration. Control samples of unexposed cells and cells exposed to pristine nanotubes were further investigated using the same experimental set up. Quantification of the intracellular levels of ROS was performed using a multi-well plate reader (FLUOstar OPTIMA, BMG LABTECH Inc., USA) and evaluating the DCF fluorescence at 485 nm excitation and 520 nm emission.

Figure S1: Quantification of the intracellular levels of ROS generated post exposure of BEAS-2B cells to 24 μ g/cm² of pristine and purified MWCNTs; different exposure periods were assessed. Results are considered significant for p*<0.05

References:

1. Gomes, A.; Fernandes, E.; Lima, J. L. F. C., Fluorescence probes used for detection of reactive oxygen species. J Biochem Bioph Meth 2005, 65 (2-3), 45-80.