Supplementary Information for:

Fabrication of polymer brush surfaces with highly-ordered perfluoroalkyl side groups at the brush end and their antibiofouling properties

Lin Wang, Xiang Chen, Xinyu Cao, Jianquan Xu, Biao Zuo, Li Zhang, Xinping Wang*, Juping Yang, Yanqing Yao

Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China

Fig. S1 GPC traces of the starting polymer $(Br-PMMA_{65}-S)_2$ (dashed) and the cleaved polymer (solid), respectively.

Fig. S2 GPC traces of macroinitiator (Br-PMMA₆₅-S)₂ (right) and (Br-PODMA₂₄-*b*-PMMA₆₅-S)₂ (left)

Fig. S3 ¹H NMR spectra of (Br-PODMA_v-b- PMMA₆₅- S)_{2.}

Fig. S4 FTIR spectra of (a) $(Br-PMMA_{65}-S)_2$, (b) $(FMA_1-ec-PMMA_{65}-S)_2$, (c) $(FMA_2-ec-PMMA_{65}-S)_2$, (d) $(FMA_5-ec-PMMA_{65}-S)_2$, (e) $(FMA_8-ec-PMMA_{65}-S)_2$.

Fig. S5 Relationship between thickness of Au-PMMA₆₅-*b*-PODMA₂₄-*ec*-PFMA₂ and rinsing time.

Fig.S6 XPS spectra of Au-PMMA₆₅-*b*-PODMA_y-*ec*-FMA₂ brushes surfaces, TOA= 30°

Fig. S7 Modulus versus temperature for different fluorinated polymer brushes surfaces. (a) Au-PMMA₁₂₆-*ec*-FMA₂, (b) Au-PMMA₆₅-*b*-PODMA₆-*ec*-FMA₂.

Table S1. Surface composition of Au-PMMA₆₅-b-PODMA_y-ec-FMA₂ (y=0, 6, 13, 19, 24) brushes. TOA=30°

Samples	F_{1s}/C_{1s} -	Surface composition (%)				
		-CF ₃	-CF ₂	-C=O	-COC=O	-CH _n
Au-PMMA ₆₅ -ec-PFMA ₂	0.60	5.1	36.5	8.1	8.1	42.3
Au-PMMA ₆₅ - <i>b</i> -PODMA ₆ - <i>ec</i> -PFMA ₂	0.79	5.9	34.8	7.9	7.9	43.5
Au-PMMA ₆₅ - <i>b</i> -PODMA ₁₃ - <i>ec</i> -PFMA ₂	1.03	7.5	29.1	12.3	12.3	38.7
Au-PMMA ₆₅ - <i>b</i> -PODMA ₁₉ - <i>ec</i> -PFMA ₂	1.17	8.3	30.4	11.0	11.0	39.3
Au-PMMA ₆₅ - <i>b</i> -PODMA ₂₄ - <i>ec</i> -PFMA ₂	1.18	10.1	36.4	11.9	11.9	29.6