Supporting Information

New targeting agents for selective drug delivery nanocarriers for treating neuroblastoma.

Gonzalo Villaverde, [†] Alejandro Baeza, ^{†*} Gustavo J. Melen, [‡] Manuel Ramirez[‡] and Maria Vallet-Regí. ^{†,*}

† Dpto. Química Inorgánica y Bioinorgánica. Instituto de Investigación Sanitaria Hospital, 12 de
Octubre i+12.UCM. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales
y Nanomedicina (CIBER-BBN). Madrid, Spain.

‡ Dpto. de Hematología y Oncología Pediátricas, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.

A.1 Synthesis of MIBG analogues.

MABG-BOC (1)

Benzyl alcohol (1 g, 8.12 mmol) in 10 mL of anhydrous THF was stirred under argon with *N*,*N* - bis(tert-butyloxycarbonyl)guanidine (2.32 g, 8.93 mmol) and TPP (4.26 g, 16.24 mmol). DIAD (3.20 mL, 16.24 mmol) was added drop-wise, and the resulting yellow heterogeneous mixture was stirred overnight at room temperature. The solvent was evaporated, and the resulting crude was reconstituted in 15 mL of EtOAc, washed with 3 x 15 mL of water and 2 x 20 mL of brine, dried, and concentrated. Pure white powder was afforded by flash chromatography isolation. Yield 60-70%.

¹H NMR (250 MHz, CDCl₃) δ 9.41 and 9.35 (s, br, 2H, NH₂), 7.18 – 7.04 (m, 1H, CH (Ar)), 6.64 – 6.52 (m, 3H, CH (Ar)), 5.09 (s, 2H, CH₂), 3.62 (s, 2H, NH₂), 1.48 (s, 9H, 3xCH₃(BOC)), 1.32 (s, 9H, 3xCH₃(BOC)).

¹³C NMR (63 MHz, CDCl3) δ 173.98 (C=O, BOC), 173.93 (C=O, BOC), 155.42 (C=N), 146.69 (C (Ar)), 140.44(C (Ar)), 129.47 (CH (Ar)), 117.56 (CH (Ar)), 114.10 (CH (Ar)), 113.81 (CH (Ar)), 84.58 (2xC(BOC)), 48.11 (CH₂), 28.70 (3xCH3(BOC)), 28.19 (3xCH₃(BOC)).

FTIR (cm-1): 3458; 3369; 3060; 2967; 2920; 1715; 1588; 1495; 1283; 1140; 1107; 977; 589. ESI(-): 363m/z [M-1]

1-(3-aminobenzyl)guanidine (MABG)

To a solution of compound (1) (100 mg, 0.27439 mmol) in DCM (2mL) at inert atmosphere, TFA (1 mL) diluted in DCM (3 mL) was added drop-wise at room temperature. When the addition finalized the temperature was increased at 65 °C and the reaction mixture was stirred overnight. The mixture was concentrated and the resulting crude was recovered in ethyl acetate and filtrated, the solution was concentrated and the resulted crude was triturated with chloroform. The resulting sticky solid was dried in reduce pressure oven at 40 °C. The reaction resulted quantitative.

¹H NMR (250 MHz, MeOD) δ 7.81 (s, 1H, C=NH), 7.42 – 7.30 (m, 1H (Ar)), 7.12 (dd, J = 14.8, 7.4 Hz, 3H (Ar)), 4.35 (s, 2H, CH₂).

¹³C NMR (63 MHz, MeOD) δ 159.29 (C=NH), 140.64 (C (Ar)), 136.86 (C (Ar)), 131.93 (CH (Ar)), 126.74 (CH (Ar)), 122.26 (CH (Ar)), 121.38 (CH (Ar)), 45.74 (CH₂).

FTIR (cm-1): 3359; 3179; 2960; 2641; 2356; 1788; 1655; 1436; 1356; 1180; 845; 795; 722; 682; 595; 519; 430.

ESI(+): 165 [M+1]

(*E*)-4-((3-((1,2-bis(tert-butoxycarbonyl)guanidino)methyl)phenyl)amino)-4-oxobutanoic acid (2)

A solution of succinic anhydride (35 mg, 274, 4mmol) in toluene (10mL) was treated dropwise with a solution (5 mL) of product **1** (100 mg) also in toluene with gentle stirring under inert conditions. The resulting mixture was stirred overnight at room temperature until the reaction finished. When the reaction was over, white powder was suspended in the solution and was filtered and washed with water (30 mL). The resulting white powder was dried in reduced pressure oven at 40°C. The process resulted quantitative.

¹H NMR (250 MHz, CDCl₃) δ 9.38 and 9.08 (s, br, 2H, NH₂), 8.09 (s, 1H, NH, amide), 7.42 (d, *J* = 7.8 Hz, 1H, CH (Ar)), 7.16 – 7.08 (m, 2H, CH (Ar)), 6.80 (d, *J* = 7.5 Hz, 1H, CH (Ar)), 5.03 (s, 2H, CH₂), 2.67 – 2.51 (m, 4H, 2xCH₂), 1.40 (s, 9H, 3xCH₃(BOC)), 1.25 (s, 9H, 3xCH₃(BOC)).

¹³C NMR (63 MHz, CDCl₃) δ 175.85 (C=O), 175.56 (C=O), 170.56 (C=O), 154.95 (C=N), 143.16 (C=O), 139.56 (C (Ar)), 137.99 (C (Ar)), 128.99 (CH (Ar)), 122.30 (CH (Ar)), 118.60 (CH (Ar)), 117.75 (CH (Ar)), 84.75 (2xC(BOC)), 47.62 (CH₂), 31.81 (CH₂), 29.51 (CH₂), 28.38 (3xCH₃(BOC)), 27.89 (3xCH₃(BOC)). FTIR (cm⁻¹): 3372; 3329; 2977; 2927; 1721; 1625; 1625; 1608; 1286; 1246; 1137; 1120; 981; 944; 615; 504.

ESI(-): 462.9 m/z [M-1]

(*E*)-2,5-dioxopyrrolidin-1-yl 4-((3-((1,2-bis(tert butoxycarbonyl) guanidino) methyl) phenyl) amino)-4-oxobutanoate (3)

A solution of compound (3) (50 mg, 0.107 mmol, in 4 mL of DCM) was treated with N,N'methanediylidenebis(propan-2-amine) (50.0 μ L, 0.323 mmol) and N-hydroxysuccinimide (24.8 mg, 0.215 mmol). When the addition was finished, the reaction mixture was stirred overnight at room temperature. The resulting solution was washed with 5x15 mL of NaHSO₄ 20% solution and 2x10 mL of brine.

Organic layer was dried with $NaSO_4$ anhydride and concentrated in order to check by ¹H-NMR the presence of the desired product. Crude can be use, just recovering in THF for NP's functionalization without further purification.

¹H NMR (250 MHz, CDCl₃) δ 9.49 (s, 2H, NH₂), 7.77 (s, 1H, amide), 7.53 (d, *J* = 8.2 Hz, 1H, Ar), 7.18 (dd, *J* = 16.7, 8.5 Hz, 2H, (Ar)), 6.90 (d, *J* = 7.6 Hz, 1H, (Ar)), 5.13 (s, 2H, CH₂), 3.03 (t, *J* = 7.1 Hz, 2H, CH₂ succ), 2.84 (s, 4H, 2xCH₂, (NHS)), 2.76 (t, *J* = 7.1 Hz, 2H, CH₂ succ), 1.47 (s, 9H, 3xCH₃(BOC)), 1.32 (s, 9H, 3xCH₃(BOC)).

1-(3-(2,5-dioxopyrrolidin-1-yl)benzyl)guanidine (MPyBG)

To a solution of compound (**3**) (130 mg, 0.280 mmol) in DCM (2mL) at inert atmosphere, TFA (1 mL) diluted in DCM (3 mL) was added drop-wise at room temperature. When the addition finalized the temperature was increased at 65 °C and the reaction mixture was stirred 48 hours. The mixture was concentrated and the resulting crude was recovered in ethyl acetate and filtrated, the solution was concentrated and the new crude triturated with chloroform. The resulting sticky solid was dried in reduce pressure oven at 40 °C. Quantitative yield was afforded but also some impurities are still in the crude as traces.

¹H NMR (250 MHz, MeOD) δ 7.93 (s, 2H, C=NH protonated imine), 7.53 (dt, *J* = 7.6, 4.2 Hz, 1H, amide), 7.46 – 7.34 (m, 1H, CH (Ar)), 7.36 – 7.26 (m, 2H, 2xCH (Ar)), 6.90 (d, *J* = 6.3 Hz, 1H, CH (Ar)), 4.48 (s, 2H, CH₂), 2.89 (s, 4H, 2xCH₂ (pyrroidin)).

¹³C NMR (63 MHz, MeOD) δ 179.33 (2xC=O), 166.44 (C=N), 139.36(C (Ar)), 134.98 (C (Ar)), 130.98 (CH (Ar)), 128.65(CH (Ar)), 128.12(CH (Ar)), 127.30 (CH (Ar)), 45.91 (CH₂), 29.87(2xCH₂).

FTIR (cm-1): 3342; 3183; 2934; 2864; 2469; 2386; 1702; 1655; 1609; 1426; 1389; 1183; 1120; 832; 798; 712.

ESI(+): 247.0 m/z [M+1]

(*E*)-2,5-dioxopyrrolidin-1-yl8-((3-((1,2-bis(tertbutoxycarbonyl)guanidino)methyl) phenyl) amino)-8-oxooctanoate (4)

To a solution of DSS (101 mg, 2 mL DCM), compound **1** was added as DCM solution (100 mg in 2 mL of DCM and 115 μ L of Et₃N) drop-wise. When the addition was finished, the reaction mixture was heated at 65 °C overnight. The resulting solution was washed with 5x15 mL of NaHSO₄ 20% solution and 2x10 mL of brine. Organic layer was dried with NaSO₄ anhydride and concentrated in order to check the presence of the desired product by ¹H-NMR and ESI. The crude can be use, just recovering it in DCM for NP's functionalization without further purification.

¹H NMR (250 MHz, CDCl₃) δ 9.49 (s, 2H, NH₂), 7.58 (s, 1H (CH (Ar)), 7.28 – 7.20 (m, 2H, (CH (Ar)), 6.94 (d, *J* = 7.0 Hz, 1H (CH (Ar)), 5.19 (s, 2H, CH₂), 2.87 (s, *J* = 2.4 Hz, 4H, 2xCH₂(NHS)), 2.70 – 2.58 (m, 2H, CH₂), 2.38 (t, *J* = 5.6 Hz, 2H, CH₂), 1.86 – 1.69 (m, 4H, 2xCH₂), 1.51 (s, 9H, 3xCH₃(BOC)), 1.48 – 1.40 (m, 4H, 2xCH₂), 1.36 (s, 9H, 3xCH₃(BOC)).

¹³C NMR (63 MHz, CDCl₃) δ 173.35 (C=O, amide), 170.77 (C=O), 170.48 (C=O, (NHS)), 168.18 (C=O (ester,NHS), 153.89 (2C; C=N, C=O (BOC)), 145.65 (C=O, (BOC)), 138.52 (C, (Ar)), 137.28 (C, (Ar)), 127.73 (CH, (Ar)), 121.05 (CH, (Ar)), 117.11 (CH, (Ar)), 116.50 (CH, (Ar)), 83.25 (C, (BOC)), 78.08 (C, (BOC)), 52.43 (CH₂), 46.42 (CH₂-CON, Suberic), 43.88 (CH₂-CO-NHS, Suberic), 27.26 (3xCH₃, (BOC)), 26.74 (3xCH₃, (BOC)), 24.58 (CH₂, Suberic), 24.56 (CH₂, Suberic), 24.37 (CH₂, (NHS)), 24.31 (CH₂, (NHS)).

ESI(+): 640.5m/z [M+Na].

MABG-PEG2000-NHS (5)

To a solution of $(NHS)_2PEG$ (2000 g/mol) (55 mg, 5 mL DCM), compound **1** was added as DCM solution (10 mg in 2 mL of DCM and 58 µL of Et₃N) drop-wise. When the addition was finished, the reaction mixture was heated at 65 °C overnight, extra Et₃N (58 µL) was added at 24 h and the mixture was again stirred at 65 °C overnight. The reaction was followed by TLC (AcOEt/Hex 1:1). The reaction is over 48 h after first addition. The resulting solution was washed with 5x15 mL of NaHSO₄ 20% solution and 2x10 mL of brine. Organic layer was concentrated and the crude precipitated by diethyl ether addition. The resulting solid can be use, for NP's functionalization without further purification.

¹H NMR (250 MHz, CDCl₃) δ 9.49 and 9.27 (s, broad, NH₂) 8.20 (s, NH, amide) 7.47 (2xCH (Ar)), 7.01 (CH (Ar)), 6.96 (CH (Ar)), 5.67 (CH₂, guanidine moiety), 3.66 (CH₂, PEG), 2.73 (CH₂, (NHS)), 2.28 (CH₂, broad, succinic moiety), 1.33 (s, 3xCH₃ (BOC)), 1.26 (s, 3xCH₃ (BOC)).

¹³C NMR (63 MHz, CDCl₃) δ 177.37 (C=O, amide), 170.97 (C=O), 167.69 (C=N), 127.59 (CH, (Ar), (there are some non-resolved down-field signals) 87.90 (C, (BOC) 70.68 (CH₂, PEG), 69.98 (CH₂, PEG), 67.26 (CH₂, PEG), 62.83 (CH₂, PEG), 58.53 (CH₂, guanidine moiety), 45.42 (CH₂-CON), 37.98 (CH₂-CON), 28.17 (6xCH₃ (BOC) (there are some non-resolved aliphatic signals).

FTIR (cm-1): 3543; 2877; 2741; 2691; 1967; 1768; 1698; 1462; 1336; 1309; 1283; 1236; 1193; 1090; 1054; 957; 838; 569; 529.

HPLC/GPC:

-(NHS)₂PEG2000 (Starting Material)

Migration Time	Mn	Mw	MP	Mz	Mz+1	Polydispersity	Mz/Mw	Mz+1/Mw	Area	% Area	Height
10,998	1651	2048	1836	2506	3054	1,240353	1.223888	1.491386	36440559	100	912676

-MABG-PEG2000-NHS (5)

Migration Time	Mn	Mw	МР	Mz	Mz+1	Polydispersity	Mz/Mw	Mz+1/Mw	Id	Area	% Area	Height
10,417			4250						0	1059367	2,96	60415
10,859	2099	2339	2486	2532	2696	1,114256	1,082608	1,152513	1485	34690629	97,04	1126405

MABG-PEG10000-NHS (6)

To a solution of $(NHS)_2PEG$ (10000 g/mol) (274.4 mg, 5 mL DCM), compound 1 was added as DCM solution (10 mg in 2 mL of DCM and 58 µL of Et₃N) drop-wise. When the addition was finished, the reaction mixture was heated at 65 °C overnight. Extra Et₃N (58 µL) was added at 24 h and the mixture was again stirred at 65 °C overnight. The reaction was followed by TLC (AcOEt/Hex 1:1). The reaction is over 48 h after first addition. The resulting solution was washed with 5x15 mL of NaHSO₄ 20% solution and 2x10 mL of brine. Organic layer was concentrated and the crude precipitated by diethyl ether addition. The resulting solid can be use, for NP's functionalization without further purification.

¹H NMR (250 MHz, CDCl₃) δ 8.02 (s, NH amide), 7.54 – 7.50 (m, CH (Ar)), 7.28 – 7.24 (m, CH (Ar)), 7.16 – 7.11 (m, CH (Ar)), 6.90 – 6.81 (m, CH (Ar)), 5.11 – 5.06 (s, broad, CH₂ guanidine moiety), 3.85 (m, CH₂ PEG), 3.74 (d, *J* = 2.9 Hz, CH₂ PEG), 3.58 (s, CH₂ PEG), 3.29 (m, CH₂ succinic moiety), 2.64 (s, CH₂, NHS), 2.61 – 2.54 (m, CH₂ succinic moiety), 2.52 – 2.39 (m, CH₂ succinic moiety), 1.26 (s, 3xCH₃ (BOC)), 1.19 (s, 3xCH₃ (BOC)).

HPLC/GPC:

-(NHS)₂PEG10000 (Starting Material)

Migration Time	Mn	Mw	MP	Mz	Mz+1	Polydispersity	Mz/Mw	Mz+1/Mw	Id	Area	% Area	Height
8,934			18896						0	2547858	7,54	93594
9,529	8460	9477	10451	10152	10674	1,120122	1,071306	1,126313	1487	31248507	92,46	879940

-MABG-PEG10000-NHS (6)

Migration Time	Mn	Mw	MP	Mz	Mz+1	Polydispersity	Mz/Mw	Mz+1/Mw	Id	Area	% Area	Height
8,91			19369						0	2035698	5,77	76645
9,5	8775	9743	10739	10408	10932	1,110247	1,068307	1,122032	1483	33246772	94,23	957764

MALDI-TOF

(NHS)₂PEG10000; 11076.831 m/z [M⁺]

MABG-PEG10000-NHS (6); 11440.146 m/z [M⁺]

11440.146 m/z-11076.831 m/z = **364** [M^+ +1] MABG-BOC (1)

<u>A.2 Determination of MAmideBG content in PEG analogues (5) and (6) by UV/Vis</u> <u>Spectrometry</u>

Quantification of guanidine moiety in PEG's using as standard compound (E)-2,5dioxopyrrolidin-1-yl8-((3-((1,2-bis(tertbutoxycarbonyl)guanidino)methyl) phenyl) amino)-8oxooctanoate (5) as standard in from of MABG-PEG analogues.

mg/mL	Α
0.096	3.089
0.048	1.748
0.0192	0.479
0.00096	0.128
0	0

MABG-BOC-PEG10000NHS (6) A= 0.442 (1.1 mg/mL) 0.01234 mg/mL------ 1.2% w/w MABG-BOC-PEG2000NHS (5) A= 2.149 (0.85 mg/mL) 0.06555 mg/mL-----7.7% w/w

A.3 Spectra

MABG-BOC (1)

S 2. ¹³C-NMR MABG-BOC (1)

-IR

S 3. IR MABG-BOC (1)

MABG

S 4. ¹H-NMR MABG

S 5. ¹³C-NMR MABG

S 7. ¹H-NMR COSY MABG

S 8. IR MABG

(E) - 4 - ((3 - ((1, 2 - bis(tert - butoxycarbonyl)guanidino)methyl)phenyl)amino) - 4 - oxobutanoic

acid (2)

-NMR

(E)-2,5-dioxopyrrolidin-1-yl 4-((3-((1,2-bis(tert butoxycarbonyl) guanidino) methyl) phenyl) amino)-4-oxobutanoate (3)

-NMR

S12. ¹H-NMR (3)

1-(3-(2,5-dioxopyrrolidin-1-yl)benzyl)guanidine (MPyBG)

S15. IR MPyBG

(*E*)-2,5-dioxopyrrolidin-1-yl8-((3-((1,2-bis(tertbutoxycarbonyl)guanidino)methyl) phenyl) amino)-8-oxooctanoate (4)

-NMR

S19. ¹H-NMR COSY (4)

MABG-PEG2000-NHS (5)

-NMR

S22. ¹³C-NMR (5)

S22. ¹H-NMR COSY (5)

-IR

(NHS)₂PEG2000

S23. IR Starting Material PEG2000

MABG-PEG2000-NHS (5)

S23. IR (5)

-GPC HPLC

MAmBG-PEG2000-NHS (5)

(NHS)₂PEG2000

MAmBG-PEG10000-NHS (6)

-NMR

S24. ¹H-NMR (6)

(NHS)₂PEG10000

MAmBG-PEG10000-NHS (6)

GPC/UV HPLC

MAmBG-PEG10000-NHS (6)

(NHS)₂PEG10000

Determination of MABG content in PEG analogues (5) and (6) by UV/Vis Spectrometry

-MAmBG-PEG2000-NHS (5)

(NHS)₂-PEG2000 Starting material

-MAmBG-PEG10000-NHS (6)

(NHS)₂-PEG10000 Starting material

MABG-PEG10000-NHS (6) (1.1 mg/mL)

205 nm (2.252 A) 235 nm (0.557 A)

B. Synthesis of Functionalized nanoparticles

- **B.1 MSN-F-NH**₂

• Pore Width 2.5 nm

Mean (5)	189.8
Std Dev	1.276
RSD %	0.672

• S27. Size MSN-F-NH₂

• Z-Pot

Mean (5) mV	+40.4
Std Dev	3.97
RSD %	9.81

• S28. Z-Pot MSN-F-NH₂

• XRD powder

- FTIR (v; cm-1): 2980.4; 2904.1; 1635.4; 1519.2; 1396.3; 1326.6; 1034.3; 948.0; 791.9;
 - 555.4.

¹³C NMR (101 MHz, None) δ 61.26 (CH₃-<u>CH₂</u>-O-Si), 59.48 (CH₃-<u>CH₂</u>-O-Si), 44.67 (<u>CH₂</u>-NH₂), 22.78 (CH₂-<u>CH₂</u>-CH₂), 17.40 (<u>CH₃</u>-CH₂-O -Si), 10.74 (CH₂-Si).

• **S32.** TG MSN-F-NH₂

100 °C95.664 %

500 °C......87.48 % Lost 8.18 % or organic material.

• SEM

B.2 Functionalization of nanoparticles

-MSN-F-MAmBG-3-BOC

• Size

Mean (5)	214.3
Std Dev	5.288
RSD %	5.288

• Z-Pot

Mean (5)	36.6
Std Dev	0.983
RSD %	2.69

- **FTIR** (v; cm-1) : 2980; 2933; 1947; 1847; 1642; 1555; 1200; 951; 791.
- 13 C-NMR MAS

¹³C NMR (101 MHz, None) δ 175.38(C=O), 174.53(C=O), 165.28(C=N), (aromatic signals)146.05, 138.65, 129.26, 124.48, 123.93, 123.17, 121.82, 60.84 (<u>CH₃-CH₂-O-Si</u>), 59.35 (<u>CH₃-CH₂-O-Si</u>), 44.07 (<u>CH₂-NH₂</u>), 31.97 (CH₂-C=O), 28.30 (CH₂-<u>CH₂-CH₂ APTES</u>, CH₃BOC), 22.58(CH₂-<u>CH₂-CH₂ APTES</u>, CH₃BOC), 17.68 (<u>CH₃-CH₂-O-Si</u>), 10.56 (CH₂-Si).

• TG

100 °C95.09431 %

500 °C......76.38038% Lost 18.71393 % or organic material.

-MSN-F-MAmBG-4-BOC

• Size

Mean (5)	188.6
Std Dev	4.386
RSD %	2.33

• Z-Pot

Mean (5)	24.1
Std Dev	0.329
RSD %	1.36

• **FTIR** (v; cm-1): 2977; 2943; 1851; 1636; 1448; 1386; 1216; 1070; 954; 808.

• TG

100 °C.....96.12715 %

-MSN-F-MAmBG-4-BOC

• Size	9
Mean (5)	207.6
Std Dev	7.685
RSD %	3.7

• Z-pot	
Mean (5)	19.1
Std Dev	0.552
RSD %	2.89

• FTIR (v; cm-1) : 2937; 2870; 2283; 1980; 1695; 1632; 1535; 1412; 1343;1200; 947; 801; 559.

• S35. ¹³C-NMR MAS MSN-F-MAmBG-4-BOC

¹³C-NMR (101 MHz, None) δ 134.82 (C_{Ar}), 122.23 (CH_{Ar}), 71.92(CH₂, PEG), 52.51(CH₃-<u>CH₂</u>-O-Si, APTES; CH₂, guanidine), 44.18 (<u>CH₂-NH₂</u>, APTES), 31.16 (CH₂-CO-NH), 27.79((CH₂-<u>CH₂-CH₂</u>, APTES; CH₃, BOC; CH₂, succinic moiety), 22.91(CH₂-<u>CH₂-CH₂</u>, APTES), 10.62(CH₂-Si, APTES).

S36. ¹³C-NMR MAS; a) MNS-F-MAmBG-5, b) compound (5), c) MSN-F-NH₂.

• TG

-MSN-F-MAmBG-4-BOC

• Size	
Mean (5)	214.6
Std Dev	14.03
RSD %	6.54

• Z-pot	
Mean (5)	12.1
Std Dev	0.607
RSD %	5

• 13 C-NMR MAS

¹³C NMR (101 MHz, None) δ 71.97 (CH₂, PEG), 65.21 (CH₂, PEG), 44.19 (<u>CH₂-NH₂</u>, APTES), 35.91 (CH₂-CO-NH), 32.27 (CH₂-CO-NH), 27.04 (CH₃, BOC; CH₂-<u>CH₂-CH₂</u>, APTES; CH₂, succinic moiety), 26.15 (CH₃, BOC; CH₂-<u>CH₂-CH₂</u>, APTES; CH₂, succinic moiety), 23.86 (CH₂-<u>CH₂-CH₂</u>, APTES), 23.26 (CH₂-<u>CH₂-CH₂</u>, APTES), 22.64 (CH₂-<u>CH₂-CH₂</u>, APTES), 10.65 (CH₂-Si, APTES).

- FTIR (v; cm-1): 2923; 2877; 1977; 1635; 1532; 1456; 1353; 1200; 947; 788; 559.
- TG

B.3 Nanomaterial guanidine deprotected

-MSN-F-MAmBG-3

• Size

Mean (5)	231.4
Std Dev	14.74
RSD %	6.36

•	Z-P	ot
Mean	(5)	29.0

. ,	
Std Dev	1.78

RSD % 2.27

• **FTIR** (v; cm-1): 2967; 1977; 1661; 1542; 1260; 1040; 954; 851; 805; 715; 552.

• XRD powder

• TG

• SEM

S40. SEM MSN-F-MAmBG-3

• ¹³C-NMR MAS

• S41. ¹³C-NMR MAS MSN-F-MAmBG-3

¹³C NMR (101 MHz, None) δ, 177.53(C=O), 174.94(C=O), (aromatic signals)144.01, 138.57, 130.12, 121.17, 61.69(<u>CH₃-CH₂-O-Si</u>), 43.96(<u>CH₂-NH₂</u>), 37.76(CH₂-C=O), 30.18(CH₂-C=O), 28.77 (CH₃, BOC; CH₂-<u>CH₂-CH₂</u>, APTES; CH₂, succinic moiety), 27.78 (CH₃, BOC; CH₂-<u>CH₂-CH₂</u>-CH₂, APTES; CH₂, succinic moiety), 22.60 (CH₂-<u>CH₂-CH₂</u>), 10.95 (CH₂-Si).

- MSN-F-MAmBG-4

• Size

Mean (5)	176.5
Std Dev	3.756
RSD %	2.13

• Z-P	ot
Mean (5)	35.6
Std Dev	1.03
RSD %	2.88

• TG

100 °C..... 97.64331 %

500 °C...... 82.14358 %......Lost 15,49981 % of organic material

• **FTIR** (v; cm-1): 2973; 1648; 1442; 1403; 1150; 1047; 954; 795; 549.

- MSN-F-MAmBG-5

• Size

Mean (5)	237.9
Std Dev	19.89
RSD %	8.36

• Z-pot	
Mean (5)	24.2
Std Dev	0.524
RSD %	2.17

TG •

> 100 °C.....95.81783 % 500 °C...... 83.37829%.....Lost 12.43954% of organic material

FTIR (v; cm-1): 2973; 2920; 1980; 1678; 1635; 1150; 1064; 954; 798; 443. •

S43. XRD MSN-F-MAmBG-5

- MSN-F-MAmBG-6

• Size	
Mean (5)	226.3
Std Dev	32.65
RSD %	14.4

• Z-pot	
Mean (5)	35.3
Std Dev	0.517
RSD %	1.46

- **FTIR** (v; cm-1): 2977; 2910; 1665; 1648; 1462; 1393; 1153; 1050; 957; 801; 565; 443.
- RX powder

C.1 Cytotoxicity In vitro assays

The capacity to deliver cytotoxic drugs to NB cells was evaluated using PEGylated material MSN-F-MAmBG-5 which exhibited remarkable targeting ability. The targeted nanovehicle was loaded with doxorubicin hydrochloride by suspension of 11.6 mg of MSN-F-MAmBG-5 particles in 1.5 mL of 5.3 mg/mL Dox PBS solution. The suspension was stirred for 24 h and the nanomaterial were scrupulously washed with H₂O twice (10mL x 2) and dried in vacuum.

NB1691-luc and human-bone marrow mesenchymal stem cells (MSC) were seeded in 24-well plates at 5000 cells/cm². Cells underwent a dose response test ranging from 0 to 50 μ g/ml of MSN-F-AmBG-5 or DOXO-MSN-F-AmBG-5 for 2 hours at 37°C, 5% CO2 and 95% humidity. Cells were then washed and harvested. Cell viability was evaluated by flow cytometry with 7AAD (Biolegends, San Diego, CA.) following the manufacturer instructions. Percentages of dead cell populations are shown as the normalized mean of two independent replicates.

The cytotoxicity of the doxorubicine loaded material MSN-F-MAmBG-5-DOX was studied in increasing concentrations for both mesenchymal (Msc) and neuroblastoma cells culture. (Figure S.45).

S45. Cytotoxic effects of nanocarriers. Data normalized with percentage of basal mortality without of citotoxic loaded nanoparticles, in 2 hours.

Mesenchymal cells were chosen as negative control because they do not exhibit NET on their membrane and they are present in the tumor-surrounding as supportive cells. The targeted vehicle showed excellent selective cytotoxic effect in all concentrations studied. Tumor cells mortality correlated with the increase of nanoparticles concentration: more than 20% NB cells

died at concentration of 50 μ g/mL in short period of time (2 hours). On the other hand, mechenchymal cells were barely affected; even at the highest carrier concentration (50 μ g/mL).