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SUPPORTING INFORMATIONS

Sum Frequency Generation theory and P3HT molecular modeling

The interfacial systems studied in this work can be treated as a three-layer system composed of two 

centrosymmetric media (i.e., the polymer bulk and the surrounding medium, air or water) and an 

interfacial layer (i.e., the polymer/water or the polymer/air interface) with different refractive 

indexes (n1, n2, n’ respectively) (Figure S1).

Figure S1. General sketch of an interfacial system treated as a three-layer structure composed of two media and an 

interfacial layer.

Upon irradiation of two optical fields  E1 and E2 with frequencies ω1 and  ω2, respectively, a 

second-order nonlinear polarization  is generated [1-4]:𝑃 (2)
𝑆𝐹𝐺(𝜔3 = 𝜔1 + 𝜔2)

 (S1)
𝑃 (2)

𝑆𝐹𝐺𝑖
(𝜔3 = 𝜔1 + 𝜔2) =

𝑥,𝑦,𝑧

∑
𝑗

𝑥,𝑦,𝑧

∑
𝑘

∑𝜒𝑒𝑓𝑓
(2)
𝑖𝑗𝑘(𝜔3 = 𝜔1 + 𝜔2):𝐸𝑗,1(𝜔1)𝐸𝑘,2(𝜔2)

where χ(2)
eff  is the effective second-order non-linear susceptibility of the interface, a third rank 

tensor composed of 27 elements with specific symmetry properties. 

χ(2)
eff  is expressed by:

                                               (S2)𝜒(2)
𝑒𝑓𝑓 = [𝑒̂(𝜔3) ∙ 𝐿(𝜔3)] ∙ 𝜒(2):[𝐿(𝜔1) ∙ 𝑒̂(𝜔1)][𝐿(𝜔2) ∙ 𝑒̂(𝜔2)]

 where  is the unit polarization vector of the electric field  and  is the Fresnel factor 𝑒̂(𝜔𝑖) 𝐸𝑖(𝜔𝑖) 𝐿(𝜔𝑖)

matrix at frequency ωi, which takes into account how light is transmitted as a function of  the 

incidence angle and wavelength.
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Under the electric-dipole approximation, the non-linear polarization generated in the two 

centrosymmetric media vanishes due to inversion symmetry; the dominating source of radiation for 

SFG  signal intensity in the reflected direction (ISFG) is thus given only by the interfacial 

polarization sheet. ISFG is expressed by [1-4]:

                                     (S3)
𝐼𝑆𝐹𝐺(𝜔3 = 𝜔1 + 𝜔2) =

8𝜋3𝜔3
2𝑠𝑒𝑐2𝛽3

𝑐3𝑛1(𝜔3)𝑛1(𝜔1)𝑛1(𝜔2)
|𝜒(2)

𝑒𝑓𝑓|2𝐼1(𝜔1)𝐼2(𝜔2)

where ni(ω) is the refractive index of media i at frequency ω,  β3 is the reflection angle of the sum-

frequency field, I1(ω1) and I2(ω2) are the intensities of the two input fields. One should notice the 

proportionality relation between  ISFG and .|𝜒(2)
𝑒𝑓𝑓|2

Through a set of polarizers, the fields of incidence can be set in two components along the 

directions parallel and perpendicular to the xz incidence plane, identified by the versors  and , 𝑝̂ 𝑠̂

respectively. In the case of an azimuthally isotropic interface, there are only 4 independent non-

vanishing components of χ(2) ; more specifically, in the adopted cartesian coordinates system, they 

are , ,  and . They can be deduced by measuring the 𝜒(2)
𝑥𝑥𝑧 = 𝜒(2)

𝑦𝑦𝑧 𝜒(2)
𝑥𝑧𝑥 = 𝜒(2)

𝑦𝑧𝑦 𝜒(2)
𝑧𝑥𝑥 = 𝜒(2)

𝑧𝑦𝑦 𝜒(2)
𝑧𝑧𝑧

SFG signal intensity for four different input and output polarization combinations, namely: SSP 

(referring to S-polarized sum-frequency field E3, S-polarized E1, and P-polarized E2, respectively), 

SPS, PSS, and PPP. In more detail,  the effective susceptibilities for these polarization combinations 

are expressed by the following equations:

 𝜒 (2)
𝑒𝑓𝑓,𝑆𝑆𝑃(𝜔3) = 𝐿𝑦𝑦(𝜔3)𝐿𝑦𝑦(𝜔1)𝐿𝑧𝑧(𝜔2)𝑠𝑖𝑛𝛽2𝜒𝑦𝑦𝑧

 𝜒 (2)
𝑒𝑓𝑓,𝑆𝑃𝑆(𝜔3) = 𝐿𝑦𝑦(𝜔3)𝐿𝑧𝑧(𝜔1)𝐿𝑦𝑦(𝜔2)𝑠𝑖𝑛𝛽1𝜒𝑦𝑧𝑦

 𝜒 (2)
𝑒𝑓𝑓,𝑃𝑆𝑆(𝜔3) = 𝐿𝑧𝑧(𝜔3)𝐿𝑦𝑦(𝜔1)𝐿𝑦𝑦(𝜔2)𝑠𝑖𝑛𝛽3𝜒𝑧𝑦𝑦

𝜒 (2)
𝑒𝑓𝑓,𝑃𝑃𝑃(𝜔3)

=‒ 𝐿𝑥𝑥(𝜔3)𝐿𝑥𝑥(𝜔1)𝐿𝑧𝑧(𝜔2)𝑐𝑜𝑠𝛽3𝑐𝑜𝑠𝛽1𝑠𝑖𝑛𝛽2𝜒𝑥𝑥𝑧 ‒ 𝐿𝑥𝑥(𝜔3)𝐿𝑧𝑧(𝜔1)𝐿𝑥𝑥(𝜔2)𝑐𝑜𝑠𝛽3𝑠𝑖𝑛𝛽1𝑐𝑜𝑠𝛽2𝜒𝑥𝑧𝑥 + 𝐿𝑧𝑧
(𝜔3)𝐿𝑥𝑥(𝜔1)𝐿𝑥𝑥(𝜔2)𝑠𝑖𝑛𝛽3𝑐𝑜𝑠𝛽1𝑠𝑖𝑛𝛽2𝜒𝑧𝑥𝑥 + 𝐿𝑧𝑧(𝜔3)𝐿𝑧𝑧(𝜔1)𝐿𝑧𝑧(𝜔2)𝑠𝑖𝑛𝛽3𝑠𝑖𝑛𝛽1𝑠𝑖𝑛𝛽2𝜒𝑧𝑧𝑧

 

(S4)
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where  is the incidence angle of the optical field , and ,  and  are the diagonal 𝛽𝑖 𝐸𝑖 𝐿𝑥𝑥(𝜔𝑖) 𝐿𝑦𝑦(𝜔𝑖) 𝐿𝑧𝑧(𝜔𝑖)

elements of , given by𝐿(𝜔𝑖)

 
𝐿𝑥𝑥(𝜔𝑖) =

2𝑛1(𝜔𝑖)𝑐𝑜𝑠𝛾𝑖

𝑛1(𝜔𝑖)𝑐𝑜𝑠𝛾𝑖 + 𝑛2(𝜔𝑖)𝑐𝑜𝑠𝛽𝑖

 
𝐿𝑦𝑦(𝜔𝑖) =

2𝑛1(𝜔𝑖)𝑐𝑜𝑠𝛽𝑖

𝑛1(𝜔𝑖)𝑐𝑜𝑠𝛽𝑖 + 𝑛2(𝜔𝑖)𝑐𝑜𝑠𝛾𝑖

 (S5)
𝐿𝑧𝑧(𝜔𝑖) =

2𝑛2(𝜔𝑖)𝑐𝑜𝑠𝛽𝑖

𝑛1(𝜔𝑖)𝑐𝑜𝑠𝛾𝑖 + 𝑛2(𝜔𝑖)𝑐𝑜𝑠𝛽𝑖
(𝑛1(𝜔𝑖)

𝑛'(𝜔𝑖) )2

In the above equations,  is the refracted angle given by the Snell law, according to the system 𝛾𝑖

geometry:

 (S6)𝑛1(𝜔𝑖)𝑠𝑖𝑛𝛽𝑖 = 𝑛2(𝜔𝑖)𝑠𝑖𝑛𝛾𝑖

It is not straightforward to measure the refractive index of the interfacial layer,   , so this is 𝑛'(𝜔𝑖)

usually supposed to be equal either to  or .𝑛1(𝜔𝑖) 𝑛2(𝜔𝑖)

In the case where the interface is composed of molecules,  is related to the molecular 𝜒(2)

hyperpolarizability tensor  by the relationship:𝛼(2)

 (S7)
𝜒𝑒𝑓𝑓

(2)
𝑖𝑗𝑘 = 𝑁𝑆𝑙𝑖𝑖(𝜔3)𝑙𝑗𝑗(𝜔1)𝑙𝑘𝑘(𝜔2)

𝑎,𝑏,𝑐

∑
𝑙,𝑚,𝑛

〈(𝑖̂ ∙ 𝑙̂)(𝑗̂ ∙ 𝑚̂)(𝑘̂ ∙ 𝑛̂)〉𝛼 (2)
𝑙𝑚𝑛

where  is the surface density of molecules. ( , , ) generically indicate the possible combination 𝑁𝑆 𝑖̂ 𝑗̂ 𝑘̂

sets of the unit vectors ( , , ) along the lab coordinates (x,y,z). ( ) generically indicate the 𝑥̂ 𝑦̂ 𝑧̂ 𝑙̂,𝑚̂,𝑛̂

possible combination sets of the unit vectors ( , , ) along the molecular coordinate  systems 𝑎̂ 𝑏̂ 𝑐̂

(a,b,c).

The diagonal elements of the tensor , namely ,   and  , describe the microscopic 𝑙(𝜔𝑖) 𝑙𝑖𝑖(𝜔𝑖) 𝑙𝑗𝑗(𝜔𝑖) 𝑙𝑘𝑘(𝜔𝑖)

local field correction, which will be neglected in our analysis (  will be taken as the identity 𝑙(𝜔𝑖)

matrix). The angular brackets denote an average over the molecular orientation distribution.

The formalism which describes, on a microscopic scale, the expression of the hyperpolarizability 

tensor  is based on the second-order time-dependent perturbation theory for the density matrix. 𝛼(2)
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For the infrared radiation resonant with the frequencies of vibrational modes q, it is possible to 

derive following approximate expression for the resonant contribution [1-8]:

 (S8)
𝛼𝑟

(2)
𝑙𝑚𝑛 =

2
ђ∑

𝑞

[∂𝛼𝑔𝑙𝑚

∂𝑄𝑞
]0[∂𝜇𝑔0𝑔1𝑛

∂𝑄𝑞
]0|⟨Θ𝑔0│𝑄𝑙│Θ𝑔1⟩|2

[𝜔 (𝑆)
𝑔1𝑔0 ‒ 𝜔2 ‒ 𝑖Γ (𝑆)

𝑔1𝑔0]

where the subscript r indicates the resonant contribution, is the frequency of the vibrational 𝜔 (𝑆)
𝑔1𝑔0

mode of the molecule,  is the derivative of the infrared dipole operator  with respect to the 

∂𝜇𝑔0𝑔1𝑛

∂𝑄𝑞 𝜇

normal mode coordinate  of the qth vibrational mode, acting between an excited vibrational state 𝑄𝑞

 and the fundamental vibrational state  (g indicate the ground electronic state, while the 𝑔1 𝑔0

numbers 0  and 1 refer to the ground and first excited vibration state),  is the derivative of the 

∂𝛼𝑔𝑙𝑚

∂𝑄𝑞

specified element of the electronic polarizability  with respect to . The dispersion of the 𝛼𝑔 𝑄𝑞

polarizability when the visible excitation is resonant with electronic transitions of the studied 

material is accounted by the following expression [1-8]:

 (S9)
𝛼𝑔𝑙𝑚 =

1
ђ∑

𝑒

𝜇𝑔𝑒𝑚𝜇𝑒𝑔𝑙

𝜔𝑒𝑔 ‒ 𝜔2 ‒ 𝜔1
+

𝜇𝑔𝑒𝑙𝜇𝑒𝑔𝑚

𝜔𝑒𝑔 + 𝜔2 + 𝜔1

In this equation, the operator  acts on transitions from the ground electronic state g to the excited 𝜇

electronic states e, and  is the resonant frequency of the electronic transition. The  infrared 𝜔𝑒𝑔

absorption and Raman scattering have their respective intensities  directly proportional to the square 

modulus of   and  . From Eq. S8, both must be non-zero in order to have SFG activity of 

∂𝜇𝑔0𝑔1𝑛

∂𝑄𝑞

∂𝛼𝑔𝑙𝑚

∂𝑄𝑞

the considered vibrational mode. It should be noted from Eqs. S8 and S9 that if the visible and SFG 

frequencies are away from electronic resonances, the hyperpolarizability tensor , and therefore 𝛼 (2)
𝑙𝑚𝑛

the nonlinear susceptibility  will be symmetric in the first two indices, which implies that for an 𝜒(2)
𝑖𝑗𝑘

isotropic surface , so that PSS and SPS polarization combinations yield the same 𝜒(2)
𝑦𝑧𝑦 = 𝜒(2)

𝑧𝑦𝑦
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tensor components. Although this is not strictly true in our experiments, we will make this 

simplifying assumption.

Furthermore, the SFG spectroscopy usually shows other contributions (from the molecules and the 

substrate) with resonances outside the region of interest, leading to the non-resonant part , 𝛼𝑛𝑟
(2)
𝑙𝑚𝑛

which in many cases is significant. Therefore  is considered to be the sum of these two 𝛼 (2)
𝑙𝑚𝑛

contributions:

 (S10)𝛼 (2)
𝑙𝑚𝑛 = 𝛼𝑟

(2)
𝑙𝑚𝑛 + 𝛼𝑛𝑟

(2)
𝑙𝑚𝑛

With IR-visible SFG, if the IR frequency  is near vibrational resonances,  and  can be 𝜔2 𝛼(2) 𝜒(2)

written as:

 (S11)
𝛼(2) = 𝛼(2)

𝑛𝑟 + ∑
𝑞

𝛼(2)
𝑞

𝜔2 ‒ 𝜔𝑞 ‒ 𝑖Γ𝑞

 (S12)
𝜒𝑒𝑓𝑓

(2) = 𝜒(2)
𝑛𝑟 𝑒𝑓𝑓 + ∑

𝑞

𝜒(2)
𝑞 𝑒𝑓𝑓

𝜔2 ‒ 𝜔𝑞 ‒ 𝑖Γ𝑞

where  ( ),  and  denote the strength, the resonant frequency and the damping constant 𝛼(2)
𝑞 𝜒(2)

𝑞 𝑒𝑓𝑓 𝜔𝑞 Γ𝑞

of the qth vibrational mode, respectively, and the subscript nr refers to the non-resonant 

contribution, which is defined as [1-8]:

 (S13)𝜒(2)
𝑛𝑟 𝑒𝑓𝑓(𝜔) = 𝐺𝑒𝑖𝐹

and  being its modulus and phase, respectively. Thus, the expression describing the SFG 𝐺 𝐹

experimental curves for a given polarization combination of the input/output beams is:

 (S14)
|𝜒𝑒𝑓𝑓

(2)(𝜔2)|2 = |𝜒(2)
𝑛𝑟 𝑒𝑓𝑓 + ∑ 𝜒(2)

𝑞 𝑒𝑓𝑓

𝜔2 ‒ 𝜔𝑞 ‒ 𝑖Γ𝑞|2

Fitting the SFG spectrum with the above expression, it is possible to estimate  . 𝜒(2)
𝑞 𝑒𝑓𝑓

In order to reduce the number of free parameters we adopted two expedients. We made the 

reasonable assumption that for a fixed mode , the parameters  and  have the same values for all 𝑞 𝜔𝑞 Γ𝑞

polarization combinations, i.e.:
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                                                                                                         (S15)𝜔𝑞,𝑆𝑆𝑃 = 𝜔𝑞,𝑆𝑃𝑆 = 𝜔𝑞,𝑃𝑃𝑃

                                                                                                         (S16)Γ𝑞,𝑆𝑆𝑃 = Γ𝑞,𝑆𝑃𝑆 = Γ𝑞,𝑃𝑃𝑃

while the parameters  were allowed to vary for each polarization combination. In this way, the 𝜒(2)
𝑞 𝑒𝑓𝑓

number of parameters is strongly reduced and the fitting procedure is more robust. However, the 

number possible vibrational modes involved for P3HT in the spectral range investigated is high and 

even after this reduction in the number of adjustable parameters, the fitting procedure might not 

converge to a suitable solution. For this reason, we started the fitting procedure by considering only 

the principal mode and obtaining a first rough fit using this simplified model. Once a suitable initial 

guess is obtained, the model is iteratively refined by adding the remaining modes until a satisfactory 

match to the experimental data is achieved. If the experimental results showed little or negligible 

contribution of a particular mode  for one of the polarization combinations, the corresponding 𝑞

intensity parameter   is fixed at 0 in order to further reduce the dimension of the fitting 𝜒(2)
𝑞 𝑒𝑓𝑓

parameters set.  All the fitting procedures have been performed by implementing model and 

formulas in OriginLab and using the dedicated nonlinear fitting tool.

In many cases of SHG and SFG,   can be associated with a well-defined section or moiety of the 𝛼(2)

surface molecules. If  is known, then the average orientation of the moiety can often be deduced 𝛼 (2)
𝑙𝑚𝑛

from measurements of   . In simpler cases, it can be associated to the whole molecule at the 𝜒(2)
𝑞 𝑒𝑓𝑓

surface of interest.

 If   for the particular studied material is known, then the average orientation of the selected 𝛼(2)
𝑞 𝑙𝑚𝑛

moiety may be deduced by comparing theoretical values of   for all polarization combinations 𝜒(2)
𝑞 𝑒𝑓𝑓

with the experimental ones obtained by fitting the SFG spectra. It is thus of fundamental importance 

in the analysis of SFG spectra to hypothesize a specific molecular model of the considered system. 

The orientation of the molecular axis system with respect to the axis of the laboratory system can be 

expressed as a function of the Euler angles ,  and :𝜃 𝜑 𝜓

 𝑎̂ = ( ‒ 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑)𝑥̂ + (𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜑 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑)𝑦̂ + (𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃)𝑧̂
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𝑏̂ = ( ‒ 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑 ‒ 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑)𝑥̂ + (𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜑 ‒ 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑)𝑦̂ + ( ‒ 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃)𝑧̂

 (S17)𝑐̂ = ( ‒ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑)𝑥̂ + ( ‒ 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)𝑦̂ + 𝑐𝑜𝑠𝜃𝑧̂

In the specific case of rr-P3HT, the c axis is selected along the polymer chain axis, while the a axis 

is in the plane of the thiophene ring (ac plane) and the b axis is perpendicular to it, as depicted in 

Figure S2.

Figure S2. Molecular reference system (a,b,c) for a rr-P3HT monomer; the orientation of the dipole moment derivative 

  is also shown.𝜇'

As a first approximation, it is possible to assume the electronic polarizabilities , and  for the 𝛼𝑎𝑎 𝛼𝑏𝑏 𝛼𝑐𝑐

P3HT monomer to be the same of those for the conjugated core of Polythiophene (PT). However, 

due to the different symmetry group (Cs for P3HT and C2ν for PT), one should also take into 

account that P3HT has a nonvanishing  polarizability component, although it should be small and 𝛼𝑏𝑐

will be neglected here. The molecular model of rr-P3HT takes into account the SFG signal  of 𝜒(2)
𝑞 𝑒𝑓𝑓

the symmetric stretching mode of Cα = Cβ ( , according to several reports in literature [9-~ 1450 𝑐𝑚 ‒ 1

10]). We will name this contribution as . For PT, the infrared dipole moment derivative 𝜒 (2)
𝐶 = 𝐶𝑒𝑓𝑓

 lies in the plane of the thiophenic ring along the a axis (hence perpendicular to c axis of 

∂𝜇
∂𝑄𝐶 = 𝐶

= 𝜇'

the chain). However, in the case of P3HT it is expected that  is slightly inclined with respect to the 𝜇'

a axis, due to the presence of the alkyl chain R, which confers greater inertia to the carbon  Thus, 𝛽2

 can be projected along the a and c axes, with components, respectively, given by    𝜇' 𝜇'
𝑎 = 𝜇'𝑐𝑜𝑠⁡(𝜉)
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and   (Figure S2, right panel). The model assumes  as a reasonable inclination. 𝜇'
𝑐 =  ‒ 𝜇'𝑠𝑖𝑛(𝜉) 𝜉 = 5°

The hyperpolarizability elements of interest for this mode are therefore given by:  

 𝛼 (2)
𝐶 = 𝐶,𝑎𝑎𝑎 = 𝛼 '

𝑎𝑎𝜇 '
𝑎

 𝛼 (2)
𝐶 = 𝐶,𝑏𝑏𝑎 = 𝛼 '

𝑏𝑏𝜇 '
𝑎

 𝛼 (2)
𝐶 = 𝐶,𝑐𝑐𝑎 = 𝛼 '

𝑐𝑐𝜇 '
𝑎

 𝛼 (2)
𝐶 = 𝐶,𝑎𝑎𝑐 = 𝛼 '

𝑎𝑎𝜇 '
𝑐

 𝛼 (2)
𝐶 = 𝐶,𝑏𝑏𝑐 = 𝛼 '

𝑏𝑏𝜇 '
𝑐

 (S18)𝛼 (2)
𝐶 = 𝐶,𝑐𝑐𝑐 = 𝛼 '

𝑐𝑐𝜇 '
𝑐

And the  components can be finally expressed as [11]:𝜒𝐶 = 𝐶
(2)
𝑖𝑗𝑘

𝜒𝐶 = 𝐶
(2)
𝑦𝑦𝑧(𝜃,𝜓)

=
𝜇'𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝜓)

2 [(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝜓)2)𝛼 '
𝑎𝑎 + (𝑐𝑜𝑠(𝜓)2 + 𝑠𝑖𝑛(𝜓)2𝑐𝑜𝑠𝜃2)𝛼 '

𝑏𝑏 + 𝑠𝑖𝑛𝜃2𝛼 '
𝑐𝑐] ‒

𝜇'𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃
2

[(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝜓)2)𝛼 '
𝑎𝑎 + (𝑐𝑜𝑠(𝜓)2 + 𝑠𝑖𝑛(𝜓)2𝑐𝑜𝑠𝜃2)𝛼 '

𝑏𝑏 + 𝑠𝑖𝑛𝜃2𝛼 '
𝑐𝑐]

 

𝜒𝐶 = 𝐶
(2)
𝑦𝑧𝑦(𝜃,𝜓)

=
𝜇'𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝜓)

2 [(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝜓)2)𝛼 '
𝑎𝑎 ‒ 𝑠𝑖𝑛𝜃2𝑠𝑖𝑛(𝜓)2𝛼 '

𝑏𝑏 ‒ 𝑐𝑜𝑠𝜃2𝛼 '
𝑐𝑐] ‒

𝜇'𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃2

2 [ ‒ 𝑐𝑜𝑠(𝜓)2𝛼 '
𝑎𝑎 ‒ 𝑠𝑖𝑛(𝜓)2𝛼 '

𝑏𝑏 + 𝛼 '
𝑐𝑐]

 

  𝜒𝐶 = 𝐶
(2)
𝑧𝑧𝑧(𝜃,𝜓) = 𝜇'(𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝜓) ‒ 𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃)[𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝜓)2𝛼 '

𝑎𝑎 + 𝑠𝑖𝑛𝜃2𝑠𝑖𝑛(𝜓)2𝛼 '
𝑏𝑏 + 𝑐𝑜𝑠𝜃2𝛼 '

𝑐𝑐 + 𝑐𝑜𝑠𝜃2𝛼 '
𝑐𝑐]

(S19)

We now define the torsion angle  between adjacent monomer rings and the chain twist versor , 𝛿 𝜏̂

perpendicular to the median plane of two consecutive monomers, which makes an angle  
𝛾 = 𝜓 +

𝛿
2

with the vertical plane defined by the z and c axes, as illustrated in Figure S3. The P3HT model 

assumes that the chain does not have inversion symmetry perpendicular to the c axis, that is, the 

thiophene rings are lying along two planes, mutually oriented by a torsion angle , where each plane 

contains half of monomers. Therefore,  is the direction of preferential torsion for the thiophene 𝜏̂
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rings at the interface. A simpler model with effectively planar chains (a distribution of   symmetric 

about 180) would only have contribution from   in Eqs. S18, and cannot explain the 𝛼 (2)
𝐶 = 𝐶,𝑐𝑐𝑐

experimental results [11].

Figure S3. Definition of the angles  and  in the molecular coordinates system.𝛿, 𝛾 𝜓

By considering the torsion between the thiophene rings of adjacent monomers and by using the 

above defined angles  and , we obtain the independent  elements as a function of chain tilt 𝛾 𝛿 𝜒𝐶 = 𝐶
(2)
𝑖𝑗𝑘

 and twist , with  and  as fixed parameters [11]: 

𝜒𝐶 = 𝐶
(2)𝑇
𝑦𝑦𝑧 (𝜃,𝛾,𝛿,𝜉)

=
1
2(𝜇'𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝛾 ‒

𝛿
2)

2 [(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝛾 ‒
𝛿
2)2)𝛼 '

𝑎𝑎 + (𝑐𝑜𝑠(𝛾 ‒
𝛿
2)2 + 𝑠𝑖𝑛(𝛾 ‒

𝛿
2)2𝑐𝑜𝑠𝜃2)𝛼 '

𝑏𝑏 + 𝑠𝑖𝑛𝜃2𝛼 '
𝑐𝑐] ‒

𝜇'𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃
2 [(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝛾 ‒

𝛿
2)2)𝛼 '

𝑎𝑎 + (𝑐𝑜𝑠(𝛾 ‒
𝛿
2)2 + 𝑠𝑖𝑛(𝛾 ‒

𝛿
2)2𝑐𝑜𝑠𝜃2)𝛼 '

𝑏𝑏 + 𝑠𝑖𝑛𝜃2𝛼 '
𝑐𝑐] +

𝜇'𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝛾 +
𝛿
2)

2 [(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝛾 +
𝛿
2)2)𝛼 '

𝑎𝑎 + (𝑐𝑜𝑠(𝛾 +
𝛿
2)2 + 𝑠𝑖𝑛(𝛾 +

𝛿
2)2𝑐𝑜𝑠𝜃2)𝛼 '

𝑏𝑏 + 𝑠𝑖𝑛𝜃2𝛼 '
𝑐𝑐] ‒

𝜇'𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃
2 [(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝛾 +

𝛿
2)2)𝛼 '

𝑎𝑎 + (𝑐𝑜𝑠(𝛾 +
𝛿
2)2 + 𝑠𝑖𝑛(𝛾 +

𝛿
2)2𝑐𝑜𝑠𝜃2)𝛼 '

𝑎𝑎 + 𝑠𝑖𝑛𝜃2𝛼 '
𝑐𝑐])

 

𝜒𝐶 = 𝐶
(2)𝑇
𝑦𝑧𝑦 (𝜃,𝛾,𝛿,𝜉)

=
1
2(𝜇'𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝛾 ‒

𝛿
2)

2 [(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝛾 ‒
𝛿
2)2)𝛼 '

𝑎𝑎 ‒ 𝑠𝑖𝑛𝜃2𝑠𝑖𝑛(𝛾 ‒
𝛿
2)2𝛼 '

𝑏𝑏 ‒ 𝑐𝑜𝑠𝜃2𝛼 '
𝑐𝑐] ‒

𝜇'𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃2

2 [ ‒ 𝑐𝑜𝑠(𝛾 ‒
𝛿
2)2𝛼 '

𝑎𝑎 ‒ 𝑠𝑖𝑛(𝛾 ‒
𝛿
2)2𝛼 '

𝑏𝑏 + 𝛼 '
𝑐𝑐] +

𝜇'𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝛾 +
𝛿
2)

2 [(1 ‒ 𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝛾 +
𝛿
2)2)𝛼 '

𝑎𝑎 ‒ 𝑠𝑖𝑛𝜃2𝑠𝑖𝑛(𝛾 +
𝛿
2)2𝛼 '

𝑏𝑏 ‒ 𝑐𝑜𝑠𝜃2𝛼 '
𝑐𝑐] ‒

𝜇'𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃2

2 [ ‒ 𝑐𝑜𝑠(𝛾 +
𝛿
2)2𝛼 '

𝑎𝑎 ‒ 𝑠𝑖𝑛(𝛾 +
𝛿
2)2𝛼 '

𝑏𝑏 + 𝛼 '
𝑐𝑐])

   

𝜒𝐶 = 𝐶
(2)𝑇
𝑧𝑧𝑧 (𝜃,𝛾,𝛿,𝜉)

=
1
2(𝜇'(𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝛾 ‒

𝛿
2) ‒ 𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃)[𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝛾 ‒

𝛿
2)2𝛼 '

𝑎𝑎 + 𝑠𝑖𝑛𝜃2𝑠𝑖𝑛(𝛾 ‒
𝛿
2)2𝛼 '

𝑏𝑏 + 𝑐𝑜𝑠𝜃2𝛼 '
𝑐𝑐] + 𝜇'(𝑐𝑜𝑠𝜉𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝛾 +

𝛿
2) ‒ 𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝜃)[𝑠𝑖𝑛𝜃2𝑐𝑜𝑠(𝛾 +

𝛿
2)2𝛼 '

𝑎𝑎 + 𝑠𝑖𝑛𝜃2𝑠𝑖𝑛(𝛾 +
𝛿
2)2𝛼 '

𝑏𝑏 + 𝑐𝑜𝑠𝜃2𝛼 '
𝑐𝑐])
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S(20)

It is worth noting that, thanks to the specific molecular symmetry properties of P3HT, the molecular 

orientation respect to the laboratory coordinates can be specified by only two angular coordinates,  

and , as mentioned in the main paper . The adopted molecular model for P3HT admits  near 170° 𝛿

[12] and takes into account the values for polarizability derivatives  𝛼 '
𝑎𝑎 = 363.09 ; 𝛼 '

𝑏𝑏 = 108.07 ;

, as calculated for oligomers with 7 thiophene monomers [13]. The obtained expressions 𝛼 '
𝑐𝑐 = 948.92

still contain a unknown scalar parameter, , which acts as a multiplicative factor. Figure S4 is a  𝜇'

plot of the three independent  elements as a function of chain orientation.𝜒𝐶 = 𝐶
(2)𝑇
𝑖𝑗𝑘 𝜇'

Figure S4. Three-dimensional plots of the nonlinear susceptibility components as a function of a rr-P3HT chain 

orientation at the interface.

The definition of the ratios  and  and , as listed in the equations below, allows eliminating the 𝑞1 𝑞2 𝑞3

unknown parameter .𝜇'

 
𝑞1(𝜃,𝛾) =

|𝜒𝐶 = 𝐶
(2)𝑇

𝑒𝑓𝑓,𝑆𝑃𝑆|
|𝜒𝐶 = 𝐶

(2)𝑇
𝑒𝑓𝑓,𝑆𝑆𝑃|

 
𝑞2(𝜃,𝛾) =

|𝜒𝐶 = 𝐶
(2)𝑇

𝑒𝑓𝑓,𝑆𝑆𝑃|
|𝜒𝐶 = 𝐶

(2)𝑇
𝑒𝑓𝑓,𝑃𝑃𝑃|

 (S21)
𝑞3(𝜃,𝛾) =

|𝜒𝐶 = 𝐶
(2)𝑇

𝑒𝑓𝑓,𝑆𝑃𝑆|
|𝜒𝐶 = 𝐶

(2)𝑇
𝑒𝑓𝑓,𝑃𝑃𝑃|
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At this point, based on the adopted molecular model for rr-P3HT, it is possible to derive a set of 

angular function of these ratios for each considered interface, and finally, based on comparison with 

the experimental values (obtained by fitting the SFG spectra), to identify admissible region of 

values for , i.e., the most probable molecular orientations.(𝜃,𝛾)

Finally, the expression for  reported above (Eq. S4) have been corrected by taking into account 𝜒(2)
𝑒𝑓𝑓

the reflection losses due to all other interfaces that the beam may go through before reaching the 

interface of interest, in the following way: 

 𝜒 (2)
𝑒𝑓𝑓,𝑆𝑆𝑃(𝜔3) = 𝑡𝑆3𝑡𝑆1𝑡𝑃2𝐿𝑦𝑦(𝜔3)𝐿𝑦𝑦(𝜔1)𝐿𝑧𝑧(𝜔2)𝑠𝑖𝑛𝛽2𝜒𝑦𝑦𝑧

 𝜒 (2)
𝑒𝑓𝑓,𝑆𝑃𝑆(𝜔3) = 𝑡𝑆3𝑡𝑃1𝑡𝑆2𝐿𝑦𝑦(𝜔3)𝐿𝑧𝑧(𝜔1)𝐿𝑦𝑦(𝜔2)𝑠𝑖𝑛𝛽1𝜒𝑦𝑧𝑦

 𝜒 (2)
𝑒𝑓𝑓,𝑃𝑆𝑆(𝜔3) = 𝑡𝑃3𝑡𝑆1𝑡𝑆2𝐿𝑧𝑧(𝜔3)𝐿𝑦𝑦(𝜔1)𝐿𝑦𝑦(𝜔2)𝑠𝑖𝑛𝛽3𝜒𝑧𝑦𝑦

𝜒 (2)
𝑒𝑓𝑓,𝑃𝑃𝑃(𝜔3)

= 𝑡𝑃3𝑡𝑃1𝑡𝑃2[ ‒ 𝐿𝑥𝑥(𝜔3)𝐿𝑥𝑥(𝜔1)𝐿𝑧𝑧(𝜔2)𝑐𝑜𝑠𝛽3𝑐𝑜𝑠𝛽1𝑠𝑖𝑛𝛽2𝜒𝑥𝑥𝑧 ‒ 𝐿𝑥𝑥(𝜔3)𝐿𝑧𝑧(𝜔1)𝐿𝑥𝑥(𝜔2)𝑐𝑜𝑠𝛽3𝑠𝑖𝑛𝛽1𝑐𝑜𝑠𝛽2𝜒𝑥𝑧𝑥 + 𝐿𝑧𝑧(𝜔3)𝐿𝑥𝑥(𝜔1)𝐿𝑥𝑥(𝜔2)𝑠𝑖𝑛𝛽3𝑐𝑜𝑠𝛽1𝑠𝑖𝑛𝛽2𝜒𝑧𝑥𝑥 + 𝐿𝑧𝑧(𝜔3)𝐿𝑧𝑧(𝜔1)𝐿𝑧𝑧(𝜔2)𝑠𝑖𝑛𝛽3𝑠𝑖𝑛𝛽1𝑠𝑖𝑛𝛽2𝜒𝑧𝑧𝑧]
 

S(22)

where the transmission Fresnel factors were calculated from the following equations for the S- and 

P- polarizations:

 
𝑡𝑆𝑖 =

2𝑛𝐼𝑐𝑜𝑠𝛽𝑖

𝑛𝐼𝑐𝑜𝑠𝛽𝑖 + 𝑛𝑇𝑐𝑜𝑠𝜂𝑖

                                                                                                                     (S23)
𝑡𝑃𝑖 =

2𝑛𝐼𝑐𝑜𝑠𝜂𝑖

𝑛𝐼𝑐𝑜𝑠𝜂𝑖 + 𝑛𝑇𝑐𝑜𝑠𝛽𝑖

being  and  the incident and the refracted angle, respectively.𝛽 𝜂

In order to provide an estimate of the admissible range for the molecular orientation, we compare 

the experimental results for  obtained from the fitting procedure with the simulated values 𝜒𝐶 = 𝐶
(2)
𝑒𝑓𝑓

for  for each chain orientation according to the molecular model (Eqs. S20 and S22). For 𝜒𝐶 = 𝐶
(2)
𝑒𝑓𝑓

each polarization (SPS, SSP, PPP) we consider just the contribution of the principal mode (C=C 

symmetric stretch at ), i.e. the expected value  and the corresponding standard ~ 1450 𝑐𝑚 ‒ 1 𝜒̅ (2)
𝐶 = 𝐶, 𝑒𝑓𝑓
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deviation . The unknown parameter , is eliminated by considering the ratios of the signal 𝜎𝐶 = 𝐶𝑒𝑓𝑓 𝜇'

components:

 
𝑞1 =

𝜒̅𝐶 = 𝐶𝑒𝑓𝑓,𝑆𝑃𝑆

𝜒̅𝐶 = 𝐶𝑒𝑓𝑓,𝑆𝑆𝑃
,

𝑞2 =
𝜒̅𝐶 = 𝐶𝑒𝑓𝑓,𝑆𝑆𝑃

𝜒̅𝐶 = 𝐶𝑒𝑓𝑓,𝑃𝑃𝑃

                                                                                                                  (S24)
𝑞3 =

𝜒̅𝐶 = 𝐶𝑒𝑓𝑓,𝑆𝑃𝑆

𝜒̅𝐶 = 𝐶𝑒𝑓𝑓,𝑃𝑃𝑃

For each pair of effective susceptibilities with fitted values  and  and standard deviations  and 𝜒̅1 𝜒̅2 𝜎1

, for the ratio  q it holds𝜎2

 (S25)
𝑞̅ =

𝜒̅1

𝜒̅2

 (S26)
𝜎𝑞 =

𝜒̅1

𝜒̅2
(𝜎1

𝜒̅1
)2 + (𝜎2

𝜒̅2
)2

In order to identify the compatible molecular orientations, we define the parameter

 (S27)
Δ𝑟 = 𝑚𝑎𝑥

𝑖 = 1,2,3

|𝑞𝑖 ‒ 𝑞𝑚𝑜𝑑
𝑖 |

𝜎𝑞𝑖

which represents the maximum discrepancy between the experimental values qi and the expected 

ones from the molecular model, qi
mod, in units of standard deviation. Admissible regions are 

identified by values of  close to zero, denoted in red/orange in Figures 3 in the main manuscript Δ𝑟

and Figures S5 and S6 in following section.

The following table illustrates the refractive index used for the Fresnel factors calculation:

CaF2 Air Water ITO rr-P3HT

 (532 nm)𝜔1 1.44 1 1.32 1.94 1.95

(1450 cm-1, ~6900 nm)𝜔2 1.37 1 1.32 1.7 1.9

 (~490nm)𝜔3 1.44 1 1.33 1.98 1.7
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Analysis of thick samples

The previous description applies when the SFG signal is generated by a single interfacial region n’ 

(typically a monolayer). In the case of samples fabricated by spin coating, like in the present study, 

possible contributions from the buried polymer/substrate interface may strongly affect the SFG 

signal from the polymer/water(air) interface, and several schemes have been used to separate these 

contributions [14-16]. It is thus important to discriminate among them, and in our study we will 

exploit the strong absorption of the visible and SFG beams in the polymer film, by taking into 

account two different cases, depending on the sample thickness t and penetration depth  of the light 𝑙𝑖

beams: 

i) 𝑡 > 𝑙𝑖

ii) 𝑡 ≪ 𝑙𝑖,

With the beams incoming from the transparent substrate (CaF2 – medium 1), in the first case, the 

contribution of the second interface (polymer/medium 2) can be neglected due to the strong 

attenuation of both the incident visible beam and the reflected SFG beam in the bulk material. 

Hence, the model of a very thin interfacial layer (monolayer) can be safely applied simply by 

assuming that the interfacial layer coincides with the first interface (medium 1/polymer), while the 

second medium is the bulk polymer (so that ). 𝑛' = 𝑛2

In the second case, one should take into account that the measured signal is the superposition of the 

contribution from the first interface (medium 1/P3HT) and from the second interface 

(P3HT/medium 2). In fact, if we assume that a linear superposition of the effects applies, which 

means neglecting phase shifts and absorption due to beam propagation in the very thin polymer 

film, for the case of the SSP polarization the following relation holds:

𝜒 𝑡ℎ𝑖𝑛
𝑒𝑓𝑓,𝑆𝑆𝑃 = 𝐹𝑆𝑆𝑃𝐿𝑆𝑆𝑃(𝜒𝑓𝑖𝑟𝑠𝑡

𝑦𝑦𝑧 + 𝜒𝑠𝑒𝑐𝑜𝑛𝑑
𝑦𝑦𝑧 ) = 𝐹𝑆𝑆𝑃𝐿𝑆𝑆𝑃𝜒𝑓𝑖𝑟𝑠𝑡

𝑦𝑦𝑧 + 𝐹𝑆𝑆𝑃𝐿𝑆𝑆𝑃𝜒𝑠𝑒𝑐𝑜𝑛𝑑
𝑦𝑦𝑧 = 𝜒 𝑡ℎ𝑖𝑐𝑘

𝑒𝑓𝑓,𝑆𝑆𝑃 + 𝜒 𝑠𝑒𝑐𝑜𝑛𝑑
𝑒𝑓𝑓,𝑆𝑆𝑃

(S28)

Where  and LSSP are the factors in equation S22 including the transmission Fresnel factors of 𝐹𝑆𝑆𝑃

previous interfaces (products of tS,P’s), and angular terms and Fresnel factors Lii, respectively. The 
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above formula clearly shows that the effective nonlinearity for SSP polarization measured in the 

case a thin sample is the sum of the effective nonlinearity that would be obtained with a sample 

having a thick P3HT layer and the contribution from the second interface (P3HT/water(air)).

Similarly for the SPS and PPP polarization, it holds

 (S29)𝜒 𝑡ℎ𝑖𝑛
𝑒𝑓𝑓,𝑆𝑃𝑆 = 𝜒 𝑡ℎ𝑖𝑐𝑘

𝑒𝑓𝑓,𝑆𝑃𝑆 + 𝜒 𝑠𝑒𝑐𝑜𝑛𝑑
𝑒𝑓𝑓,𝑆𝑃𝑆

                                                                                                     (S30)𝜒 𝑡ℎ𝑖𝑛
𝑒𝑓𝑓,𝑃𝑃𝑃 = 𝜒 𝑡ℎ𝑖𝑐𝑘

𝑒𝑓𝑓,𝑃𝑃𝑃 + 𝜒 𝑠𝑒𝑐𝑜𝑛𝑑
𝑒𝑓𝑓,𝑃𝑃𝑃

At this point, using the information obtained on the “thick” samples, thick, and repeating the fitting 

procedure also for the “thin” samples, yielding , we use the above equations to get the 𝜒𝑡ℎ𝑖𝑛

contribution from the second interface, . These  ijk are analyzed with the same molecular 𝜒𝑠𝑒𝑐𝑜𝑛𝑑 𝜒𝑠𝑒𝑐𝑜𝑛𝑑

model  to obtain the molecular orientation at the second interface, the polymer/water(air) interface.

In our work, we were in regime (ii), close to the thin film limit, since we had to employ a 

configuration with light incident from the substrate, due to the strong attenuation of the IR beam in 

water. In this case, we had to take into account contribution from the substrate/polymer interface, 

and subtract it out of the thin film measurements, as in Eqs. S28-S30. We thus carried out a 

complete analysis also in the case of a thick sample (approx. 300 nm) (Figure S5), which allowed us 

to isolate specific SFG contributions of the CaF2/P3HT interface and to consider them in the 

analysis of the thin samples. It should be noted that if the sample were thick enough, the two sets of 

spectra should have been identical, since the second polymer/water(air) interface would give no 

contribution. The small differences in the intensity ratios among different polarization combinations 

may be due to a finite thickness of the polymer film, to interference effects in the mid-IR (which is 

not so strongly absorbed in the polymer), or to partial penetration of water within the polymer film, 

slightly affecting the molecular orientation. However, the angular plots of r for the two cases 

[Figure S5(c) and (d)] are similar, confirming that our analysis is robust and gives meaningful 

results.
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Figure S5.  SFG spectra and corresponding angular plots of r for a thick polymer layer(approximately 300 nm), 

exposed to air (panels (a) and (c)) and water (panels (b) and (d)),  with light beams incident from the CaF2 substrate. 

From these data the specific contribution of the substrate (CaF2/P3HT interface) was calculated, and taken into account 

in the analysis of thin films.

Finally, for the sake of completeness, we report also the results obtained in the study of the 

air/polymer interface for a thick sample, with the beams incoming from the air side, fully 

confirming the results reported in the main text (Figure S6).
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Figure S6. SFG spectra and angular plot of r obtained for a thick rr-P3HT sample, for light beams incident from the 

air/polymer interface.
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Surface energy calculation from molecular dynamics simulations

First of all we built the reference bulks for P3HT and water. The P3HT bulk polymer was formed 

by 60 chains with the same chemical termination of the polymer at the surface (methyl group). The 

bulk was equilibrated at room temperature and pressure (NPT ensemble) for 10 ns. After the 

equilibration, the volumetric mass density (i.e. the polymer mass per unit volume) is found to be 

=1.06 g/cm3, in good agreement with the experimental values of 1.01-1.10 g/cm3 [18, 19]. The 

average cell size is 90.68 x 124.86 x 44.46 Å3. The bulk P3HT was then relaxed by a 10000-steps 

conjugate gradient minimization as implemented in NAMD in order to obtain a reference energy of 

the bulk polymer, Ebulk=Npp where Np is the number of molecules in the considered polymer 

crystal and p is the energy density, i.e. the energy per molecule. 

The same protocol was applied to the bulk water: we have equilibrated Nw=3921 water molecules at 

ambient conditions and then relaxed the system by a 10000-steps conjugate gradient minimization, 

to obtain the reference energy for the water Ewater=Nww, with w being the energy per water 

molecule.

As for the free surfaces, the P3HT-vacuum systems were only relaxed by a 10000-steps conjugate 

gradient minimization in order to leave the chain orientation unaltered ( and  angles). The surface 

energy of the polymer in vacuo is then calculated as

 (S31)
𝜎𝑝 =

𝐸𝑝(𝛾,𝜃) ‒ 𝑁𝑝𝜇𝑝

2𝐴(𝛾,𝜃)

where  is the configurational energy of the tilted polymer slab,  the energy of a bulk 𝐸𝑝(𝛾,𝜃) 𝑁𝑝𝜇𝑝

polymer containing the same number of molecules  and  is the surface area.𝑁𝑝 𝐴(𝛾, 𝜃)

P3HT-water systems were preliminarily equilibrated in the pseudo-NVT ensemble at room 

temperature in order to allow the water molecules to rearrange around the polymer chains. At this 

stage, the atomic positions of the P3HT molecules were kept fixed so preserving the initial  and  𝛾 𝜃

angles. After a very short simulation time (less than ) the configuration energy converged to a 100 𝑝𝑠
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constant value with oscillations smaller than . The resulting configurations were then fully 0.05 𝐽/𝑚2

relaxed by a -steps conjugate gradient minimization. The interface energy in water  is 10000 𝜎𝑝 𝑤

defined as

 , (S32)
𝜎𝑝 𝑤 =

𝐸𝑝 𝑤(𝛾,𝜃) ‒ 𝑁𝑝𝜇𝑝 ‒ 𝑁𝑤𝜇𝑤

2𝐴(𝛾,𝜃)

where  is the configuration energy of polymer/water system,  is the number of the water 𝐸𝑝 𝑤(𝛾,𝜃) 𝑁𝑤

molecules in the system and  is the area of the interface between the polymer slab and the 𝐴(𝛾,𝜃)

water.

Finally, the following figure illustrates the schematic representation of the tilting angle  and its 𝜃

projections over the  plane, used in the modeling of the surface energy, as detailed in the main (𝑥,𝑧)

text, in order to take into account the oscillating energy cost  due to the intermolecular 𝜎1(𝜃)

staggering.

Figure S7. Schematic representation of the polymer orientation in the (x,z) plane used in the modeling of the formation 

energy. The tilting angle ϑ and interchain distance d are reported. 
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