Supporting Information

Enhanced Raman sensitivity and magnetic separation for urolithiasis detection using phosphonic acid-terminated Fe₃O₄ nanoclusters.

Yi-Chun Chiu¹, Po-An Chen², Po-Yang Chang², Cheng-Yang Hsu², Ching-Wei Tao³, Chih-Chia Huang^{2,3,5*}, and Huihua Kenny Chiang^{2,3,4*}

¹Division of Urology, Department of Surgery, Zhong Xiao Branch, Taipei City Hospital, Taipei, Taiwan

² Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan

³ Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan

⁴ Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, 112, Taiwan

⁵ Department of Photonics, Center for Micro/Nano Science and Technology, and Advanced Optoelectronic Technology Center, National Cheng Kung University, 701, Tainan, Taiwan.

Email: c2huang@mail.ncku.edu.tw; hkchiang@ym.edu.tw

Figure S1. UV-visible spectra of gelatin-coated Fe_3O_4 NPs, commercial Fe_3O_4 NPs (Alfa Aesar; 20-30 nm), and Fe_2O_3 NPs (Sigma-Aldrich; < 50 nm).

Figure S2a shows a FT-IR spectrum of gelatin-coated Fe₃O₄ nanoclusters. A band at 570 cm⁻¹ is consistent with the Fe–O vibrations of the Fe₃O₄ structure.¹ The absorptions at 1633 cm⁻¹, 1548 cm⁻¹, 1263 cm⁻¹ were assigned to amide I (1600–1690 cm⁻¹, C=O stretching), amide II (1480–1575 cm⁻¹, CN stretching, NH bending), and amide III (1229–1301 cm⁻¹, CN stretching, NH bending) from gelatin molecule. Peaks at 1580 cm⁻¹ and 1425 cm⁻¹ are due to the presence of vas(COO)⁻ and vs(COO)⁻, respectively,^{1,3} from organic gelatin, citrate, and TMA molecules capped onto the surface of the Fe₃O₄ nanoclusters. A broaden band coupled with peaks at 952 cm⁻¹ and 860 cm⁻¹ is possible related to γ (O-H • • O) and δ (C–O) groups.³

Figure S2. FT-IR measurement of as-prepared gelatin-coated Fe₃O₄ nanoclusters.

References

- 1. G. V. M. Jacintho, A. G. Brolo, P. Corio, P. A. Z. Suarez, and J. C. Rubim, *J. Phys. Chem. C*, **2009**, *113*, 7684.
- 2. J. Banker, Biochim. Biophys. Acta, 1992, 1120, 123.
- 3. Filipe A. Almeida Paz and Jacek Klinowsk, Inorg. Chem., 2004, 43, 3882

Figure S3. a) SQUID measurements of M-H plot (300K) of N_2H_4 /gelatin-free Fe₃O₄ nanoparticles. SQUID measurements of b) M-H plot (300 K) and c) Ms value-reaction time plot of as-synthesized Fe₃O₄ nanoclusters obtained at different reaction time.

Figure S4. Time-dependent a) XRD patterns and b) TEM images of gelatin-coated Fe_3O_4 nanoclusters prepared at different reaction times.

Figure S5. TEM image of gelatin-free Fe₃O₄ nanoclusters.

Figure S6. TEM images of Fe_3O_4 nanoclusters coating on the surface of a) COD and b) COM crystals.

Figure S7. SEM images of gelatin-coated Fe_3O_4 nanoclusters deposited on the surface of a Si wafer.

Figure S8. SEM images of a) gelatin-coated Fe_3O_4 nanoclusters and b) phosphonic acid-terminated Fe_3O_4 nanoclusters attached to the surface of COD crystals.

Figure S9. SEM images of a) gelatin-coated Fe_3O_4 nanoclusters and b) phosphonic acid-terminated Fe_3O_4 nanoclusters attached to the surface of COM crystals.

Figure S10. SEM images of a) gelatin-coated Fe_3O_4 nanoclusters and b) phosphonic acid-terminated Fe_3O_4 nanoclusters attached to the surface of HAP crystals.

Figure S11. SEM images of gelatin-coated Fe₃O₄ nanoclusters attached to the surface of a) MG, b) Cys, c) DCPD, and d) UA crystals.

Because the regular geometry of COD crystals favored a theory measurement, we calculated the coating density of phosphate terminal Fe₃O₄ nanoclusters on a COD crystal using Matlab software (Figure S11). The bright contrast was mapped to calculate the total areas of Fe₃O₄ nanoclusters in the 1/8 surface of a COM crystal, including a triangle and a rectangle block. We assumed each particle of the Fe₃O₄ nanocluster consisted of three Fe₃O₄ nanocrystals, leading to a contribution of ~ 40 nm in height. As a result, a rough estimation gave approximately 3.44 x 10^6 Fe₃O₄ NPs anchored to a single COD crystal.

Figure S12. Imaging analysis of the coverage of phosphonic acid-terminated Fe_3O_4 nanoclusters onto a single COD crystal, followed with treatment of imaging sharpening (middle) and ROI selection (right) for the quantitative calculation of brightening spots in the ROI area, which was performed using a Matlab algorithm.

Figure S13. Illustration of our custom-built Raman spectroscope system equipped with a 632.8 nm laser.

Figure S14. Raman spectra of Fe_3O_4 -COD, Fe_3O_4 -COM and Fe_3O_4 -HAP, where the Ca-based samples were used from standard powders.

Figure S15. Optical image and Raman spectra of struvite crystals before a) and after b) binding with phosphonic acid-terminated Fe_3O_4 nanoclusters. c) SEM and EDS measurements of struvite crystals after binding with phosphonic acid-terminated Fe_3O_4 nanoclusters.

