Facile preparation of cancer-specific polyelectrolyte nanogels from natural and synthetic sugar polymers

Fang Yuan,^a Shasha Wang,^a Wei Lu,^b Gaojian Chen,^{*b} Kehua Tu,^a Hongliang Jiang^a and Li-Qun Wang^{*a}

^aMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and

Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

^bCenter for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou,

215006, P. R. China.

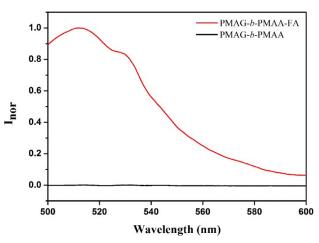


Fig. S1. Fluorescence emission spectra of PMAG-*b*-PMAA and PMAG-*b*-PMAA-FA ($E_x = 485$ nm) with normalized fluorescence intensities (I_{nor}) in 10 mM HEPES buffer solution.

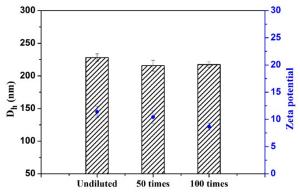


Fig. S2. Stability over concentration of glyco/CS-nanogels (neg/pos ratio = 0.4) by diluting 50 or 100-fold with 10 mM HEPES buffer solution (pH 7.4, NaCl 0.15 M)

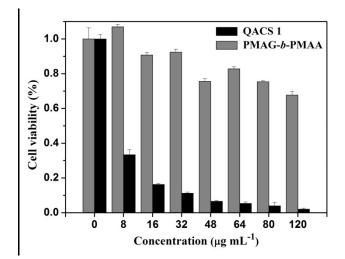


Fig. S3. WST-8 assay results of K562 cells treated with free QACS 1 or PMAG-*b*-PMAA (equivalent molarity as it is in glyco/CS nanogels) after incubation for 24 h.