Supporting Information

Noncovalent assembly of reduced graphene oxide and alkyl-grafted mesoporous silica: an effective drug carrier for near-infrared light-responsive controlled drug release

Dinggeng He, [†] Xuecai Li, [†] Xiaoxiao He,* Kemin Wang,* Jinlu Tang, Xiaoxiao Yang, Xing He, Xue Yang and Zhen Zou

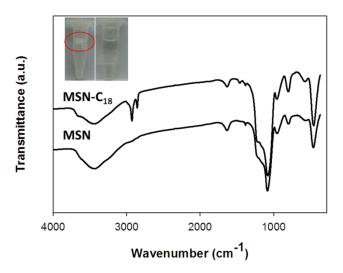


Fig. S1 FTIR spectra of the synthesized MSN- C_{18} and MSN. Inset: photo of MSN- C_{18} (left) and MSN (right) solutions. The red circle illustrates the hydrophobicity of MSN- C_{18} .

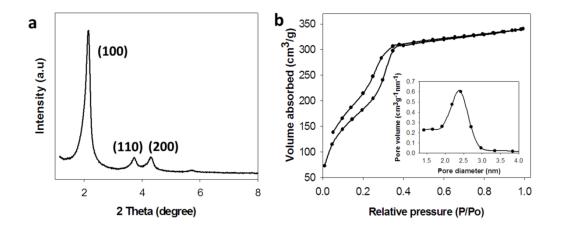
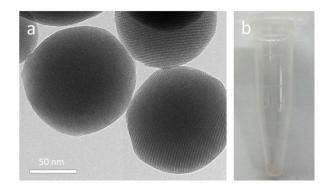
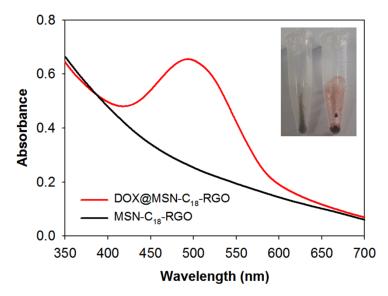




Fig. S2 a) Powder XRD pattern of MSN- C_{18} . b) BET nitrogen adsorption-desorption isotherm of MSN- C_{18} . Inset: BJH pore size distribution of MSN- C_{18} .

Fig. S3 a) TEM image of MSN nanoparticles after being treated with RGO sheets. b) photo of MSN nanoparticles treated with RGO sheets. A white precipitate was observed in the bottom of centrifuge tube, further indicating that RGO sheets did not exist in the MSN surface.

Fig. S4 UV-vis spectra of MSN-C₁₈-RGO and DOX@MSN-C₁₈-RGO in aqueous solution (1.0 mg mL⁻¹). Inset: photo of MSN-C₁₈-RGO (left) and DOX@MSN-C₁₈-RGO (right) nanoparticles.

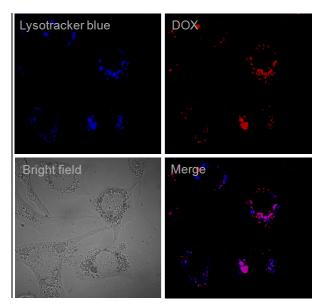


Fig. S5 CLSM images of SMMC-7721 cells after being incubated with DOX@MSN- C_{18} -RGO for 1 h. Lysotracker Blue (blue fluorescence) was used to stain the lysosomes. Cells were imaged using a 100× oil-immersion objective.

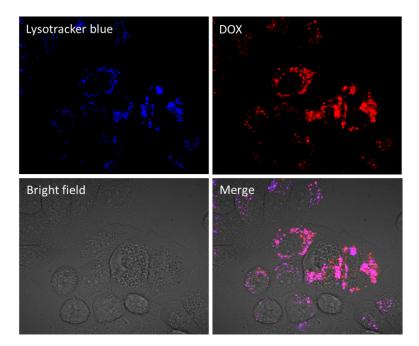


Fig. S6 CLSM images of SMMC-7721 cells after being treated with DOX@MSN-C₁₈-RGO for 8 h in the absence of NIR light irradiation. Lysotracker Blue (blue fluorescence) was used to stain the lysosomes. Cells were imaged using a $100 \times$ oil-immersion objective.

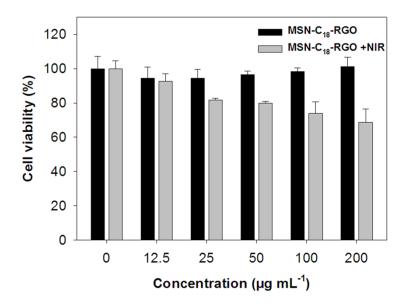


Fig. S7 Viability of SMMC-7721 cells incubated with various MSN- C_{18} -RGO (0-200 μ g mL⁻¹) concentrations with and without NIR light irradiation.