Supporting information

Supramolecular Association of 2D Aluminosiloxane Aquagel Building Blocks to 3D Porous Cages and its Efficacy for Topical and Injectable Delivery of Fluconazole, an Antifungal Drug

Linsha Vazhayal,^a Nishanth Kumar Sasidharan,^b Sindhoor Talasila,^c Dileep B. S. Kumar,^b and Ananthakumar Solaiappan^{a*}

^a Functional Materials Section, Materials Science and Technology Division, Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019, Kerala, India.

^b Agroprocessing and Natural Products Division, Council of Scientific and Industrial Research -National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram -695019, India.

^c K. M College of Pharmacy, Department of Pharmaceutics, Uthangudi, Melur Road, Madurai-625107, Tamilnadu, India.

*Corresponding author. Tel.: 91-471-2515289, +91-9497271547 *E-mail address*: <u>ananthakumar70@gmail.com</u> (Ananthakumar S.)

Figure S1. (a-b) TEM and (c) SEM images of the ALS aquagel.

Table S1. Yield stress and hysteresis loop area values obtained in flow mode of rheological experiment.

Serial	H ₂ O/Al	Al/APTMS	Yield stress	Hysteresis loop	
no:			(Pa)	area (Pa/s)	
1	60	0.2	85.5±15	1685	
2	70	0.2	49.6±15	885	
3	80	0.2	39.5±15	578	
4	90	0.2	15.5±15	198	
5	100	0.2	6.0±15	9	
6	80	0.1	45.5±15	736	
7	80	0.2	33.4±15	646	
8	80	0.4	25.7±15	619	
9	80	0.6	21.3±15	452	
10	80	0.8	16.1±15	378	

Figure S2. Angular frequency sweep experiments of ALS aquagel prepared with different APTMS concentrations for fixed 0.1% strain.

Serial	H ₂ O/Al	Al/APTMS	Storage modulus	Loss	
no:			(G') (Pa)	Modulus (G") (Pa)	
1	80	0.1	1201±10	95±10	
2	80	0.2	978±10	62±10	
3	80	0.4	797±10	48±10	
4	80	0.6	250±10	42±10	
5	80	0.8	40±10	25±10	

Table S2. The values of storage modulus (G') and loss modulus (G'') at a fixed strain of 0.1% for ALS aquagel.

Figure S3. Demonstration of the injectable nature of the ALS aquagel and its release phenomenon using rhodamine B dye.

Figure S4. FTIR (a) and Raman (b) spectra of ALS aquagel, FLZ-ALS aquagel and pure FLZ drug. Marked by the asterisks are structure-sensitive bands of FLZ in FLZ-ALS aquagel.

Assignments	Raman	FTIR
H-bonded OH stretching		3022
C=C stretching aromatic ring	1618	1620
C=C stretching aromatic ring	1376	
Triazole ring stretching $/C = C$	1471	1467
stretching aromatic ring		
C =C stretching aromatic ring/	1376	-
ring stretching of triazole		
group		
C-F stretching of 2, 4 difluoro-	1255	1274
benzyl group/OH deformation		
β-C-H triazole ring	1217	1223
Triazole ring breathing	1135	1143
C-OH str./CH deformation of	1086	1081
2, 4 difluorobenzyl group		
β -CH aromatic ring/C-(OH)	1027	1019
stretching of propane		
backbone		
β -CH aromatic ring	969	968
Triazole ring deformation	903	919
γ -CH aromatic ring	745	738
Skeletal and ring deformation	243,367	-

Table S3. Wavenumber (cm⁻¹) of observed bands in infrared and Raman spectra of FLZ¹.

1. Cyr, T. D.; Dawson, B. A.; Neville, G. A.; Shurvell, H. F., Spectral characterization of fluconazole. *J. Pharm. Biomed. Anal.* **1996**, *14*, 247-255.

Table S4. Kinetic models used for analysis of drug release data from ALS aquagels

Model name	Equation	Parameters definition			
Zero order	F = Q + kt	F amount of drug release at time t, Q is the			
		initial amount of drug in the solution (most			
		times Q=0) and k is the zero order release			
		constant			
First order	$F = 100 (1 - e^{(-kt)})$	F amount of drug release at time t, and k is the			
		first order kinetic constant			
Higuchi	$F = k(t)^{1/2}$	F amount of drug release at time t, k is the rate			
C		constant			
Korsmeyer-	$F = kt^n$	F is the amount of drug release, <i>n</i> is the value			
Peppas		release exponent, and k is the release constant			

Drug	Kinetic models and related parameters							
formulations	First Order		Korsmeyer-Peppas			Higuchi		Zero Order
	\mathbb{R}^2	k	R ²	k	n	\mathbb{R}^2	k	\mathbb{R}^2
FLZ-ALS0.2	0.9576	0.0744	0.9681	14.1727	0.556	0.9952	13.2271	0.97716
FLZ-ALS0.4	0.9356	0.0744	0.9591	12.1447	0.596	0.9832	12.2371	0.98984
FLZ-ALS0.6	0.8947	0.0744	0.9421	11.7949	0.636	0.9898	11.6511	0.98783
Flucos gel	0.9165	0.0744	0.9011	13.678	0.686	0.9767	11.6971	0.96934

Table S5. Properties of the Kinetic Model Parameters for Drug-Release Studies at pH 7.4.

S1. Procedures for H9c2 cell culture: H9c2 cell lines (immortalized ventricular myoblasts from rat embryo) were purchased from ATCC. They were maintained in cell culture flasks containing Dulbeccos Modified Eagle's Medium (DMEM) with 10% fetal bovine serum (FBS), antibiotics (100 U/ml Penicillin and 100µg/ml streptomycin) and amphotericin (0.25µg/ml) at 37 °C with 5% CO₂ in air and 99% humidity. Medium renewal was carried out every 2-3 days. Passaging of cells was carried out on 70% confluency. The confluent cells in cell culture flasks were treated with 0.25% trypsin and 0.02% EDTA in phosphate buffered saline (PBS) and placed at 37 °C in CO₂ incubator for 1 minute allowing the cells to detach from the surface. After the detached cells were viewed under phase contrast microscope, the trypsin present in the flask was inactivated using DMEM containing 10% FBS. The cells were then centrifuged at 3000 rpm for 2 min and the pellet (cells) formed was resuspended in 10% FBS supplemented medium and plated at a concentration of 1x10⁵ cells in cell culture flasks (for the purpose of maintenance) or seeded at appropriate densities in well plates for experiments to be carried out.