Development of molecularly imprinted polymer nanoarrays of N-acryloyl-2mercaptobenzamide on silver electrode for ultratrace sensing of uracil and 5fluorouracil

Bhim Bali Prasad^{*a} and Anil Kumar^a

^aAnalytical Division, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India

* Corresponding author. E-mail address: <u>prof.bbpd@yahoo.com</u> Phone +91 9451954449; Fax: +91 542 22368127

Electronic Supplementary Information (ESI):

Fig. S1 Effect of anodization potential (A), anodization time (B), template: monomer molar ratio (C), monomer : cross-linker molar ratio (D), polymerization time (E), and CNT amount (F) on DPASV response of Ura/5-FU.

Fig. S2 FT-IR (KBr) spectra: (A) 5-FU, (B) Ura, (C) MIP-5-FU-adduct, (D) MIP-Ura adduct, and (E) MIP (5-FU or Ura).

Fig. S3 Deconvoluted XPS spectra of various elements (O, N, C) of MIP Ura/5FU (A-C) and NIP (D-F).

Fig. S4 Effect of deposition potential (A), deposition time (B), and pH (C) on DPASV response of Ura/5-FU.

Fig. S5 (A) DPASV response for analyte and interferents [when studied individually (each 19.607 ng mL^{-1})] after water-washing and before water-washing at NIP modified nanoarrays electrode and for analyte and interferents(s) (each having concentration 19.607 ng mL^{-1}) in individual capacity at MIP-Ura/5-FU modified nanoarrays silver electrode.

(B) DPASV response of 19.607 ng mL⁻¹ 5-FU in binary mixture with interferents [19.607 ng mL⁻¹(Ura, DA, Cret); 196.0 ng mL⁻¹ (Ade, Gua, Cyt, Thy, Hypo, BA, AA, Caff); 588.2 ng mL⁻¹

(Urea); 19.607 μ g mL⁻¹ (Glu)]. DPASV response of 19.607 ng mL⁻¹ Ura in binary mixture with interferents [58.823 ng mL⁻¹(Ade); 19.607 ng mL⁻¹ (5-FU, Gua, Cyt, Thy, DA); 98.039 ng mL⁻¹ (Hypo); 19.607 ng mL⁻¹ (BA, AA, Caff); 19.6 μ g mL⁻¹ (UA, Cret); 196.0 μ g mL⁻¹ (Urea); 490.2 μ g mL⁻¹ (Glu). The multiple sample examined was consisted of 19.607 ng mL⁻¹ plus mixture of the interferents, each having clinically relevant aforementioned concentrations.

Fig. S6 TG Curves of MIP (a), and MIP-adduct (b).

Complex	$\Delta E \ (\text{kJ mol}^{-1})$		
	1:1	1:2	
Ura-APD	-33.86	-69.31	
Ura-HPP	-26.25	-73.51	
Ura-AMB	-65.63	-133.90	
5-FU-APD	-34.13	-70.88	
5-FU-HPP	-27.77	-44.63	
5-FU-AMB	-66.42	-139.41	

Table S1 Binding energies, ΔE , of the optimized complexes of Ura and 5-FU with APD, HPP and AMB at MP2/6-31+G (d, p) basis set.

S.	Method	Determination range (ng mL ⁻¹)		Limit of detection (ng mL ⁻¹)		Comments	Reference
N.							
		Ura	5-FU	Ura	5-FU	_	
1.	Electrochemical oxidation at pyrolytic graphite electrode	14.56× 10 ³ - 112.07× 10 ³	13.00× 10 ³ - 85.84× 10 ³	-	-	No interference study and no real sample analysis	[1]
2.	MIP polymer brushes grafted to SPME fiber	1.0- 70.00	1.00- 80.00	0.02	0.04	Interference and real sample studies	[2]
3.	Non-hydrolytic sol–gel derived	1.99–75.0	9.99–426.46	0.56	1.30	Interference and real sample studies	[3]
4.	HPLC assay with UV detection	2.5-80.00	-	-	-	No interference study	[4]
5.	HPLC method	6.25-100.0	-	0.62	-	No interference study	[5]
6.	Measurement by liquid chromatography tandem mass spectrometry	0.5–100	-	-	-	No interference study	[6]
7.	MIP membranes prepared by phase separation	14.34×10 ²	-	-	-	No interference study and no real samples analysis	[7]

Table S2 Comparison of different methods for the determination of Ura and 5-FU.

8.	MIP mer	nbranes	134.48	-	-	-	No interference	[8]
	functiona	alized by	885.35				study and no real	
	phase inv	version					sample analysis	
	imprintir	ng						
9.	MIP	(RNA-type	-	-	-	7.28	No interference	[9]
	Nucleoba	ase pairing)					study	
	electroch	nemical						
	sensor							
10.	Present v	vork	1.49-278.76	1.33-401.15	0.50	0.33	Interference and	
							real sample studies	

References

- 1 R. N. Goyal, U. P. Singh and A. A. Abdullah, *Indian J. Chem.*, 2003, **42A**, 42–47.
- 2 B. B. Prasad, K. Tiwari, M. Singh, P. S. Sharma, A. K. Patel, and S. Srivastava, *Biomed. Chromatogr.*, 2009, 23, 499–509.
- 3 B. B. Prasad, D. Kumar, R. Madhuri and M. P. Tiwari, *Electrochim. Acta*, 2012, 71, 106–115.
- 4 R. Deporte, M. Amiand, C. Charbonnel and L. Campion, J. Chromatogr. B, 2006, 834, 170–177.
- 5 G. Remaud, M. B. Celle, C. Hameline, A. Morel and E. Gameline, *J. Chromatogr. B*, 2005, **823**, 98–107.
- 6 H. Jiang, J. Jiang, P. Hu and Y. Hu, J. Chromatogr. B, 2002, 769, 169–176.
- 7 Q. Zhang, T. Kusunoki, Q. Xu, H. Wang and T. Kobayashi, *Anal. Bioanal. Chem.*, 2007, **388**, 665–673.
- 8 H. Y. Wang, S. L. Xia, H. Sun, Y. K. Liu, S. K. Cao and T. Kobayashi, J. Chromatogr. B, 2004, 804, 127–134.
- 9 T. P. Huynh, P. Pieta, F. D'Souza and W. Kutner, Anal. Chem., 2013, 85, 8304-8312.