Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Facile Preparation of Graphene Nanoribbon/Cobalt Coordination Polymer Nanohybrid for Non-enzymatic H₂O₂ Sensing by Dual Transducer: Electrochemical as well as Fluorescence

Sanjeev K. Ujjain^{a,b*}, Preety Ahuja^b, Raj Kishore Sharma^{b*}

^aDepartment of Physics, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India. ^bDepartment of Chemistry, University of Delhi, Delhi-110007, India.

Table of content (TOC)

- Figure S1 I-V Curves of graphene oxide nanoribbon (GONR) and graphene nanoribbon metal coordination polymer nanocomposite (MCPs@GNR) taken on pressed pallet using two probe keithley 2400 source meter.
- Figure S2 Cyclic voltammogram of MCPs/ITO electrode before (black) and after (red) addition of 1.0 mM H₂O₂.
- Figure S3 Florescence intensities of MCPs@GNR in the absence and presence of H_2O_2 (10 μ M) at pH 7.4, 7.0 and 6.8. The results show the sensor provided the optimal sensitivity at pH 7.4 (PBS 0.1M).
- Figure S4 Amperometric response of MCPs@GNR/ITO sensor upon addition of 0.05 mM AA, LA, UA, DA and H₂O₂ at 0.3 V.

Figure S1 I-V Curves of graphene oxide nanoribbon (GONR) and graphene nanoribbon metal coordination polymer nanocomposite (MCPs@GNR) taken on pressed pallet using two probe keithley 2400 source meter.

Figure S2 Cyclic voltammogram of MCPs/ITO electrode before (black) and after (red) addition of 1.0 mM H₂O₂.

Figure S3 Florescence intensities of MCPs@GNR in the absence and presence of H_2O_2 (10 μ M) at pH 7.4, 7.0 and 6.8. The results show the sensor provided the optimal sensitivity at pH 7.4 (PBS 0.1M)

Figure S4 Amperometric response of MCPs@GNR/ITO sensor upon addition of 0.05 mM AA, LA, UA, DA and H₂O₂ at 0.3 V.