Supporting Information

Molecular Beacon-Loaded Polymeric Nanoparticles for Non-Invasive Imaging of mRNA

Expression

Christian Wiraja, David C. Yeo, Sing Yian Chew, Chenjie Xu*

C. Wiraja, D.C. Yeo, S.Y. Chew, C. Xu School of Chemical and Biomedical Engineering, Nanyang Technological University 70 Nanyang Drive, Singapore 637457 E-mail: <u>CJXu@ntu.edu.sg</u>

C. Xu

NTU-Northwestern Institute of Nanomedicine, Nanyang Technological University 50 Nanyang Avenue, Singapore 639798

S.Y. Chew

Lee Kong Chian School of Medicine, Nanyang Technological University Novena Campus 11 Mandalay Road, Singapore 308232

Figure S1. MB hybridization with β -actin mRNA. **A**) Schematic illustration of the working principle of MBs. **B**) Hybridization of β -actin mRNA MBs (0.5 μ M) with various concentrations of complementary target sequence or one-base mismatch sequence. $n\geq4$, ** indicates p<0.01 comparing the normalized fluorescence intensity following perfect or 1 base pair mismatch target hybridization, at various concentrations.

Figure S2. Characterization of β -actin nanosensors: **A**) Calibration curve of fluorescence intensity versus MB concentration. **B**) Encapsulation efficiency of MBs in MB-NPs for five batches.

Figure S3. Cytotoxicity study of MB-NPs. **A)** MSCs viability assay under the incubation with MB-NPs at the concentrations ranging from 0 to 5 mg/ml for 24 hours. **B)** MSC proliferation assay under the incubation with MB-NPs at the concentrations of 0, 1, 2.5, and 5 mg/ml for 3 and 6 days. **C)** Fluorescence intensity plot of MSCs following MB-NP labeling at various concentrations. Mean \pm std, n = 6. N.S: non-significant, # indicates p<0.001 to unlabeled group.

Figure S4. Representative fluorescence and bright field images of MSCs following co-incubation with MB-NPs and specific endocytosis inhibitors. Scale bar: 100µm.

Figure S5. Representative fluorescence and bright field images of MSCs labeled with MB-NPs (**A**) and free MBs (**B**) on day 1, 4, and 8 post labeling. Scale bar= 100μm.

Figure S6. Longitudinal imaging of MSCs labeled with scrambled-MB-NPs or free scrambled-MBs. Representative fluorescence and bright field images of MSCs labeled with scrambled-MB-NPs (**A**) or free scrambled-MBs (**B**) over a period of 8 days post labeling. Scale bar= 100 μ m. **C**) Quantification of fluorescence intensity from MSCs labeled with free scrambled-MBs or scrambled-MB-NPs over the period of 8 days post labeling. Each point is shown as mean ± std of signal intensity of over 150 cells, following the normalization to control β-actin MB-SLO 4 hour group.

Figure S7. Schematic illustration of the β -actin mRNA expression in MSCs with MB-NPs. Following the labeling with MB-NPs, MSCs were seeded on the 2D culture plate or 3D PCL scaffold. Cells were imaged with the fluorescence microscope at day 1, 2, 4, 6, and 8.

Figure S8. Free MBs for monitoring the cellular expression of β -actin mRNA in MSCs cultured on 2D tissue culture plate and 3D PCL scaffold. **A**) Quantification of the average fluorescence intensity per cell at various time point post labeling with free MBs. Each data point is generated by averaging signal intensity of ≥ 150 cells. **B**) A correlation plot between the ratio of MB fluorescence intensity of MSCs on 3D scaffold and 2D plate, versus the ratio of β -actin fold change in MSCs on 3D scaffold and on 2D plate from RT-qPCR. *: p<0.05; ***: p<0.001