Electronic Supplementary Information

Three dimensional Pt nanodendrites/graphene/MnO₂ nanoflowers

modified electrode for sensitive and selective detection of dopamine

Beibei Yang^a, JinWang^a, Duan Bin^a, Mingshan Zhu^{*b}, Ping Yang^a, Yukou Du^{*a}

 ^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
E-mail: <u>duyk@suda.edu.cn</u>; Fax: +8651265880089; Tel: +86 512 65880361
^b Department Chemistry, University of Toronto, Toronto M5S 3H6, Canada
E-mail: mingshanzhu@yahoo.com

Fig. S1. (A) TEM image of the 3D Pt/RGO/MnO₂ nanocomposites. (B~E) C, Mn, O and Pt element mapping images of the 3D Pt/RGO/MnO₂ nanocomposites on image (A), respectively. (F) EDX spectrum of the 3D Pt/RGO/MnO₂ nanocomposites.

Fig. S2. DPV curves of Pt/RGO/MnO₂, Pt/RGO, MnO₂, RGO and GCE electrodes recorded in 0.1 M PBS (pH=7.0) containing 5 mM AA, 0.05 mM UA and 0.05 mM DA.

Fig. S3. CVs of Pt/RGO/MnO₂ in 0.1 M PBS (pH=7.0) containing 5 mM AA, 0.05 mM UA and 0.05 mM DA. Scan rate : 50 mV s⁻¹.

Electrode	Linear range (µM)	LOD (µM)	Sensitivity (µA mM ⁻¹)	Reference
Graphene/GCE	4–100	2.64	65.9	[1]
RGO/Pd-NPs/GCE	1-150	0.233	183.4	[2]
Graphene oxide/GCE	1–15	0.27	554.5	[3]
Modified Pt /CNS/GCE	0.8–100	0.12	658.6	[4]
graphene-AuNPs/GCE	5-1000	1.86	35.7	[5]
CTAB-GO/MWNT/GCE	5-500	1.5	217.4	[6]
Fe ₃ O ₄ /RGO/GCE	0.5-100	0.7	2869	[7]
GEF/CFE	0.7-45.21	0.5	1910	[8]
graphene/Pt-modified GCE	0.03-8.13	0.03	969.5	[9]
MnO ₂ /Pt/RGO/GCE	1.5-215.56	0.1	1916.2	This work

Table S1. Comparison of our present work with other techniques for DA detection

CNS: carbon nanosheet. AuNPs: Au nanoparticles. MWNT: multiwalled carbon nanotube. GEF: graphene flowers, CFE: carbon fiber electrode.

Table S2. Assay results of rat serum samples using the proposed and reference methods.

Samples	1	2	3	4	5
Added (µM)	1	5	10	50	100
Proposed method found (µM)	0.98	4.68	10.43	49.09	105.5
Reference method found (μM)	1.07	5.03	10.06	51.4	99.81
Relative error (%)	-8.41	-6.96	3.68	-4.49	5.7

References

- [1] Y. R. Kim, S. Bong, Y. J. Kang, Y. Yang, R. Mahajan, J. Kim, H. Kim, *Biosens. Bioelectron.*, 2010, 25, 2366.
- [2] S. Palanisamy, S. Ku, S. M. Chen, Microchim Acta, 2013, 180, 1037.
- [3] F. Gao, X. Cai, X. Wang, C. Gao, S. Liu, F. Gao, Q. Wang, Sens. Actuators, B, 2013, 186, 380.
- [4] Z. Wang, M. Shoji, H. Ogata, Analyst, 2011, 136, 4903.
- [5] J. Li, J. Yang, Z. Yang, Y. Li, S. Yu, Q. Xu, X. Hu, Anal. Methods, 2012, 4, 1725.
- [6] Y. Yang, W. Li, Biosens. Bioelectron., 2014, 56, 300.
- [7] T. P. See, A. Pandikumar, H. N. Ming, L. H. Ngee, Y. Sulaiman, Sensors, 2014, 14 15227.
- [8] J. Du, R. Yue, F. Ren, Z. Yao, F. Jiang, P. Yang, Y. Du, Biosens. Bioelectron., 2014, 53, 220.
- [9] C. L. Sun, H. H. Lee, J. M. Yang, C. C. Wu, Biosens. Bioelectron., 2011, 26, 3450.