Supporting Information

Mitochondria-specific imaging and tracking in living cells with two-photon phosphorescent iridium(III) complexes

Kangqiang Qiu, Huaiyi Huang, Bingyang Liu, Yukang Liu, Pingyu Zhang, Yu Chen,

Liangnian Ji, and Hui, Chao*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry

and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

Tel: +86 20 84110613; Fax: +86 20 84112245; Email: ceschh@mail.sysu.edu.cn

Table of Contents

Scheme S	S1 Synthetic route to Ir1-Ir4
Table S1	Photophysical data for Ir1-Ir4S
Fig. S1	ESI-MS spectrums of L1-L4S
Fig. S2	¹ H NMR spectrum of L1-L2S
Fig. S3	¹ H NMR spectrum of L3-L4Se
Fig. S4	ESI-MS spectrums of Ir1-Ir4
Fig. S5	¹ H NMR spectrum of Ir1
Fig. S6	¹ H NMR spectrum of Ir2
Fig. S7	¹ H NMR spectrum of Ir3
Fig. S8	¹ H NMR spectrum of Ir4
Fig. S9	Absorption spectra of Ir1-Ir4
Fig. S10	Emission spectra of Ir1-Ir4
Fig. S11	Two-photon absorption cross-sections of Ir1-Ir4
Fig. S12	Confocal images of Ir1
Fig. S13	Confocal images of Ir2
Fig. S14	Confocal images of Ir3
Fig. S15	Confocal images of Ir4
Fig. S16	The mechanism of cellular uptake of Ir1-Ir4
Fig. S17	One- and two-photon imaging of Ir2 in 3D multicellular spheroidsS20
Fig. S18	One- and two-photon imaging of Ir3 in 3D multicellular spheroidsS2
Fig. S19	One- and two-photon imaging of Ir4 in 3D multicellular spheroidsS22
Fig. S20	Mitochondrial morphological Changes Tracking of Ir2-Ir4

Scheme S1 Synthetic route to Ir1-Ir4. (i) CH₃COOH, reflux, 12 h, 70-75%; (ii) CH₃OH-CH₂Cl₂ (1:1, v/v), reflux, 12 h, 50-55%.

Complexes	λ_{ab}^{a}	$\overset{b}{\epsilon}$	λ_{em}^{c}	ϕ^d	$\tau/\mu S^{e}$	δ/GM ^f
Ir1	390	6.65	519	0.128	0.103	19.1
Ir2	390	6.66	525	0.125	0.109	18.8
Ir3	390	6.68	521	0.129	0.131	19.1
Ir4	390	6.63	522	0.144	0.115	18.4

Table S1. Photophysical data for Ir1-Ir4 in CH₃CN at 298 K

^{*a*} λ_{ab} maximum values of the one-photon absorption in nm. ^{*b*} Extinction coefficient in 1×10^3 M⁻¹·cm⁻¹. ^{*c*} λ_{em} maximum values of the one-photon emission spectra in nm. ^{*d*} Phosphorescent quantum yield. ^{*e*} Life time. ^{*f*} Two-photon absorption cross section at 760 nm, measured in methanol.

Fig. S1 ESI-MS spectrums of L1-L4.

Fig. S2 ¹H NMR spectrums of L1-L2.

Fig. S3 ¹H NMR spectrums of L3-L4.

Fig. S4 ESI-MS spectrums of Ir1-Ir4.

Fig. S5 ¹H NMR spectrum of **Ir1**.

Fig. S6 ¹H NMR spectrum of **Ir2**.

Fig. S7 ¹H NMR spectrum of **Ir3**.

Fig. S8 ¹H NMR spectrum of **Ir4**.

Fig. S9 Absorption spectra of Ir1-Ir4 (5 μ M).

Fig. S10 Emission spectra of Ir1-Ir4 (5 μ M).

Fig. S11 Two-photon absorption cross-sections of **Ir1-Ir4** at different excitation wavelengths. Insert: The power dependence curve of **Ir1-Ir4** at an excitation wavelength of 760 nm.

Figure S12. One-photon microscopy (OPM) and two-photon microscopy (TPM) images of HeLa cells co-labeled with **Ir1** (5 μ M, 0.5 h) and LTR (50 nM, 0.5 h). **Ir1** was excited at 405 nm (OPM) or 760 nm (TPM). LTR (OPM) was excited at 543 nm. The phosphorescence/fluorescence was collected at 520 ± 20 nm and 620 ± 20 nm for **Ir1** and LTR, respectively. Overlay 1: Overlay of the 1st and 2nd columns. Overlay 2: Overlay of the 3rd and 4th columns. Scale bar: 10 μ M.

Fig. S13 One-photon microscopy (OPM) and two-photon microscopy (TPM) images of HeLa cells co-labeled with **Ir2** (5 μ M, 0.5 h) and (a) MTR (50 nM, 0.5 h) or (b) LTR (50 nM, 0.5 h). **Ir2** was excited at 405 nm (OPM) or 760 nm (TPM). MTR (OPM) and LTR (OPM) were excited at 543 nm. The phosphorescence/fluorescence was collected at 520 ± 20 nm and 620 ± 20 nm for **Ir2**, MTR and LTR, respectively. Overlay 1: Overlay of the 1st and 2nd columns. Overlay 2: Overlay of the 3rd and 4th columns. Scale bar: 10 μ M.

Fig. S14 One-photon microscopy (OPM) and two-photon microscopy (TPM) images of HeLa cells co-labeled with **Ir3** (5 μ M, 0.5 h) and (a) MTR (50 nM, 0.5 h) or (b) LTR (50 nM, 0.5 h). **Ir3** was excited at 405 nm (OPM) or 760 nm (TPM). MTR (OPM) and LTR (OPM) were excited at 543 nm. The phosphorescence/fluorescence was collected at 520 ± 20 nm and 620 ± 20 nm for **Ir3**, MTR and LTR, respectively. Overlay 1: Overlay of the 1st and 2nd columns. Overlay 2: Overlay of the 3rd and 4th columns. Scale bar: 10 μ M.

Fig. S15 One-photon microscopy (OPM) and two-photon microscopy (TPM) images of HeLa cells co-labeled with **Ir4** (5 μ M, 0.5 h) and (a) MTR (50 nM, 0.5 h) or (b) LTR (50 nM, 0.5 h). **Ir4** was excited at 405 nm (OPM) or 760 nm (TPM). MTR (OPM) and LTR (OPM) were excited at 543 nm. The phosphorescence/fluorescence was collected at 520 ± 20 nm and 620 ± 20 nm for **Ir4**, MTR and LTR, respectively. Overlay 1: Overlay of the 1st and 2nd columns. Overlay 2: Overlay of the 3rd and 4th columns. Scale bar: 10 μ M.

Fig. S16 TPM images of living HeLa cells incubated with 5 μ M **Ir1-Ir4** under different conditions. (a) The cells were incubated with 5 μ M **Ir1-Ir4** at 37 °C for 0.5 h. (b and c) The cells were pretreated with endocytic inhibitors NH₄Cl (50 mM), and chloroquine (50 μ M) respectively, and then incubated with 5 μ M **Ir1-Ir4** at 37 °C for 0.5 h. (d) The cells were incubated with 5 μ M **Ir1-Ir4** at 4 °C for 0.5 h. (e) The cells were pretreated with 5 μ M **Ir1-Ir4** at 37 °C for 1 h at 37 °C and then incubated with 5 μ M **Ir1-Ir4** at 37 °C for 0.5 h. (b) The cells were pretreated with 5 μ M **Ir1-Ir4** at 37 °C for 1 h at 37 °C and then incubated with 5 μ M **Ir1-Ir4** at 37 °C for 0.5 h. Scale bar: 10 μ m.

Fig. S17 (a) One- and two-photon phosphorescent images of 3D tumor spheroids after incubation with Ir2 (5 μ M) for 6 h. (b) The one- and two-photon Z-stack images were taken of every 3 μ m section from the top to bottom. (c) The one- and twophoton 3D Z-stack images of an intact spheroid. The images were taken under a 10× objective. $\lambda_{ex} = 405$ nm (one-photon) or $\lambda_{ex} = 760$ nm (two-photon); $\lambda_{em} = 520 \pm 20$ nm.

Fig. S18 (a) One- and two-photon phosphorescent images of 3D tumor spheroids after incubation with Ir3 (5 μ M) for 6 h. (b) The one- and two-photon Z-stack images were taken of every 3 μ m section from the top to bottom. (c) The one- and twophoton 3D Z-stack images of an intact spheroid. The images were taken under a 10× objective. $\lambda_{ex} = 405$ nm (one-photon) or $\lambda_{ex} = 760$ nm (two-photon); $\lambda_{em} = 520 \pm 20$ nm.

Fig. S19 (a) One- and two-photon phosphorescent images of 3D tumor spheroids after incubation with Ir4 (5 μ M) for 6 h. (b) The one- and two-photon Z-stack images were taken of every 3 μ m section from the top to bottom. (c) The one- and twophoton 3D Z-stack images of an intact spheroid. The images were taken under a 10× objective. $\lambda_{ex} = 405$ nm (one-photon) or $\lambda_{ex} = 760$ nm (two-photon); $\lambda_{em} = 520 \pm 20$ nm.

00:30	01:00	01:30	02:00	02:30	03:00	03:30	04:00	04:30	05:00
Ir2	20	20	200	00	10 A 1	1 . A.	200	200	e (
05:30	06:00	06:30	07:00	07:30	08:00	08:30	09:00	09:30	10:00
00	000	200	30.01	20.00	2000	20.01	20 01		00
00:30	01:00	01:30	02:00	02:30	03:00	03:30	04:00	04:30	05:00
Ir3	10	8 °	13 °	69 % ****	19 m		19 2	10 81	10 m
05:30	06:00	06:30	07:00	07:30	08:00	08:30	09:00	09:30	10:00
00:30	01700	01:30	02:00	02:30	03:00	03:30	04:00	04:30	05:00
05:30	06:00	06:30	07/00	07:30	08:00	08:30	00:00	09:30	10:00

Fig. S20 Two-photon phosphorescent images of live HeLa cells treated with CCCP (20 μ M) stained with Ir2-Ir4 (5 μ M, $\lambda_{ex} = 760$ nm, $\lambda_{em} = 520 \pm 20$ nm) with increasing scan time. Scale bar: 10 μ m.