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Calculation of Photothermal Conversion Efficiency

 Following Roper’s report,1,2 the total balance of the system can be expressed:

 (1)
∑
𝑖

𝑚𝑖𝐶𝑝,𝑖
𝑑𝑇
𝑑𝑡
= 𝑄𝐶𝑃𝐸+ 𝑄𝐷𝑖𝑠 ‒ 𝑄𝑠𝑢𝑟𝑟

where mi and Cp,i are the mass and heat capacity of water. T is the solution 

temperature, QCPE is the energy inputted by CPE. QDis is the energy input by the 

sample cells, Qsurr is heat conduction away to the air. 

The laser induced energy, QCPE represent the heat dissipated by electron-phonon 

relaxation.

 (2)𝑄𝐶𝑃𝐸= 𝐼(1 ‒ 10
𝐴808)𝜂

Where I is laser power, η is photothermal conversion efficiency. A808 is the 

absorbance of CPE at 808 nm. In addition, the heat dissipated from the sample cell, 

QDis is measured to be 14.5 mW using pure water as control.

The energy transfer to air is:

  (3)𝑄𝑠𝑢𝑟𝑟= ℎ𝑆(𝑇 ‒ 𝑇𝑠𝑢𝑟𝑟)

Where h is heat transfer coefficient, S is the surface area. Tsurr is the ambient 

temperature.

As the heat input QCPE and QDis is based on laser input, the Qsurr increase with 

temperature increase. Under laser irradiation, the temperature of the system 

increases to equilibrium, where the temperature is defined as Tmax. When 

temperature reach Tmax, the input is equal to heat output.

 (4)𝑄𝐶𝑃𝐸+ 𝑄𝐷𝑖𝑠= ℎ𝑆(𝑇𝑚𝑎𝑥 ‒ 𝑇𝑠𝑢𝑟𝑟)

To get hS, a dimensionless drive force temperature is defined as 

 (5)
𝜃=

𝑇 ‒ 𝑇𝑠𝑢𝑟𝑟
𝑇𝑚𝑎𝑥 ‒ 𝑇𝑠𝑢𝑟𝑟
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and a sample system time constant is defined as

 (6)
𝜏𝑠=
∑𝑚𝑖𝐶𝑝,𝑖

ℎ𝑆

Combine Eq (1) and (6)

 (7)

𝑑𝜃
𝑑𝑡
=
1
𝜏𝑠
(

𝑄𝐶𝑃𝐸+ 𝑄𝐷𝑖𝑠

ℎ𝑆(𝑇𝑚𝑎𝑥 ‒ 𝑇𝑠𝑢𝑟𝑟
‒ 𝜃)

At the cooling stage as shown in Figure 1A, laser input is shut off, and QCPE + QDis = 0, 

and hence Eq (7) becomes

 (8)𝑡=‒ 𝜏𝑠(ln 𝜃)

From Figure S2 plot, τs is calculated to be 201 s, and 182 s for P1 and P2, respectively, 

which is used to calculate hS. As laser output area is 0.5 cm2, the photothermal 

conversion efficiency is calculated to be 33.2% and 32.0% for P1, and P2, respectively. 
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Figure S1. ROS generation of P1 and P2 under irradiation using ABDA as the indicator. 
A) Absorbance change of ABDA at 400 nm in the present of P1 or P2 under irradiation. 
Absorbance spectra of B)ABDA solution, C) ABDA and P1 solution, D) ABDA and P2 solution, 
under irradiaiton.
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Figure S2. A) Temperature changes of CPE aqueous solution (50 µg/mL), in which the 

laser lasts for 10 min, and then the laser is switched off. B) Plot of linear time data 
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from the cooling stage versus negative natural logarithm of drive force temperature. 

The slop represents the sample system time constant τs.

0 50 100 150 200
-10

-5

0

5

10

15

20

Ze
ta

 P
ot

en
tia

l (
m

V)
Concentration (g/mL)

 P1
 P2

300 450 600 750 900 1050
0.0

0.3

0.6

0.9

1.2

1.5

Ab
so

rb
an

ce
 (a

.u
.)

Wavelength (nm)

 Van A
 Van A + P1
 Van A + P2

A B

Figure S3. A) Absorption spectra of Van A before and after treatment with P1 or P2 
(100 µg/mL). B) Zeta potential changes of Van A after treatment with P1 or P2 at 
different concentrations.
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Figure S4. A) Absorption spectra of Van B before and after treatment with P1 or P2 
(100 µg/mL). B) Zeta potential changes of Van B after treatment with P1 or P2 at 
different concentrations.
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Figure S5. A) Absorption spectra of B. Subtilis after treatment with A) P1 or B) P2 at 
different concentrations. C) Plot of absorbance at 750 nm versus P1 or P2 at diferent 
concentrations. D) Zeta potential changes of B. Subtilis after treatment with P1 or P2 
at different concentrations.
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Figure S6. A) Absorption spectra and B) zeta potential changes of HeLa cells before 
and after treatment with P1 or P2 (100 µg/mL).
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Figure S7. Plate photographs for E coli LB agar plate supplemented with P1 under 
dark (A, B, C) and upon 808 nm laser irradiation (0.75 W/cm2 for 6 min) (C, D, E). The 
concentrations of P1 used for incubation are 10 (A, D), 20 (B, E) and 100 (C, F) µg/mL.
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Figure S8. Plate photographs for B. subtilis LB agar plate supplemented with P1 
under dark (A, B, C) and upon 808 nm laser irradiation (0.75 W/cm2 for 6 min) (C, D, 
E). The concentrations of P1 used for incubation are 10 (A, D), 20 (B, E) and 100 (C, F) 
µg/mL.
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Figure S9. A) CFU survival percentages and B) photographs of Van A LB agar plate 
supplemented with P1 in dark and upon 808 nm laser irradiation (0.75 W/cm2 for 6 
min). 
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Figure S10. A) CFU survival percentages and B) photographs of Van B LB agar plate 
supplemented with P1 in dark and upon 808 nm laser irradiation (0.75 W/cm2 for 6 
min). 
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Figure S11. Plate photographs for E coli LB agar plate supplemented with P2 under 
dark (A, B, C) and upon 808 nm laser irradiation (0.75 W/cm2 for 6 min) (C, D, E). The 
concentrations of P2 used for incubation are 10 (A, D), 20 (B, E) and 100 (C, F) µg/mL.
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Figure S12. Plate photographs for B. Subtilis LB agar plate supplemented with P2 
under dark (A, B, C) and upon 808 nm laser irradiation (0.75 W/cm2 for 6 min) (C, D, 
E). The concentrations of P2 used for incubation are 10 (A, D), 20 (B, E) and 100 (C, F) 
µg/mL, respectively.
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