Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

1	Supporting Information
2	
3	The facile one-step aqueous synthesis of near-infrared emitting Cu ⁺
4	doped CdS quantum dots as fluorescence bioimaging probes with high
5	quantum yield and low cytotoxicity
6	
7	Ting-Ting Sun ^{a, 1} , Ming Wu ^{b,c, 1} , Xi-Wen He ^a , Wen-You Li ^{a, *} , Xi-Zeng Feng ^{b, *}
8 9	^a College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of
10	Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Molecular
11	Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and
12	Engineering (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China. E-mail:
13	wyli@nankai.edu.cn
14	^b State Key Laboratory of Medicinal Chemical Biology (Nankai University), College of Life
15	Science, Nankai University, 94 Weijin Road, Tianjin 300071, China. E-mail:
16	<u>xzfeng@nankai.edu.cn</u>
17	^c College of Life Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu 273165,
18	China. E-mail: wumingqufu@163.com
19 20	¹ These authors contributed equally to this work.
20	

1 Fig. S1 Scheme of the mechanism for Cu dopant emission.

- 2
- 3

4 Table. S1 Previous Cu:CdS QDs properties.

⁵ _____

Sulfer source	Heating atmosphere	Solvent	Temp. (℃)	Cu ⁺ or Cu ²⁺	λmax (nm)	QY%	Cell imaging	Ref.
Thiourea	N_2	aqueous	100	Cu^+	586	21.86	KB	1
Na ₂ S	Air	aqueous	100	Cu^{2+}	722	<10	HeLa	2
Sulfur powder	Air	organic	220	Cu^+	680	20-30	-	4
Dodecanethiol	Air	organic	200	Cu^+	707	15.8	-	7
H ₂ S gas	Air	organic	100	Cu^{2+}	680	-	-	8
Sulfur powder	Air	organic	220	Cu^{2+}	710	65	-	24
Thiourea	Air	aqueous	95	Cu^+	466- 612	20	-	25

1 SI. 1

2 The photoluminescence quantum yield (PLQY) of as-prepared Cu+:CdS QDs was

3 counted by FLS 920 fluorescence spectrophotometer (Edinburgh, Britain) inherent

4 calculator using the formula as:

 $QY_{QDs} = \int L_{emission} / \int E_{slovent} - \int E_{sample}$

 $L_{emission} =$ Sample emission

 $E_{slovent} = Solvent excitation$

 $E_{sample} = Sample excitation$

11 The consequence was almost the same with the F-4500 fluorescence12 spectrophotometer (Hitachi, Japan) which was calculated by manual computation13 expression as follows:

 $QY_{QDs} = QY_{dye} \times \frac{A_{QDs}}{A_{dye}} \times \boxed{\frac{n_{QDs}}{n_{dye}}}^2 \times \frac{1 - 10^{-D_{dye}}}{1 - 10^{-D_{QDs}}}$

where A was the integrated area, n was the refractive index, and D was the opticaldensity of QDs and dye. Moreover, the integral method was accurate and simplecomparing to the traditional process.

Fig. S2 Synthesis of water soluble Cu^+ doped CdS quantum dots via one-step method.

1

2 Fig. S3 (a) The emission wavelength and PL intensity of the Cu⁺:CdS QDs 3 synthesized with different Cu dopants amount. (b) Influence of pH on the emission 4 wavelength and PL intensity of the Cu⁺:CdS QDs. (c) The emission wavelength and 5 PL intensity of the Cu⁺:CdS QDs with different concentration of L-Cys. (d) The 6 emission wavelength and PL intensity of the Cu⁺:CdS QDs with different ratios of 7 Na₂S:Cd²⁺. (e) Influence of reflux time on the emission wavelength and PL intensity 8 of the Cu⁺:CdS QDs.

1

2 Fig. S4 XPS spectra of the Cu⁺:CdS QDs.

3

4 Fig. S5 The PL spectra of the Cu $^+$:CdS QDs synthesized in the optimal conditions in

5 N_2 atmosphere after 0, 3, 6, 12, 48 hours.

1

Fig. S6 The effects of pH on the fluorescence properties of the as-prepared Cu⁺:CdS 2 QDs.

- 3
- 4

6 Fig. S7 Fluorescence images of 3T3 cells. (a) Bright field image, (b) fluorescent image and (c) merged image cells incubated for 4 hours with 20 μ g/mL Cu:CdS 7 QDs synthesized at optimal conditions in air atmosphere. 8

2 Fig. S8 Effect of the d-dots prepared in air atmosphere on the viability of HeLa

3 cells. The viability of HeLa cells in vitro measured by MTT assay. The HeLa cells

4 were incubated for 1 2, 4, 6 hours with different concentrations (0, 5, 10, 20, 50

5 μ g/mL) of the Cu:CdS QDs prepared in air atmosphere.

- 6
- 7